- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Sharifi, Romyar (3)
-
Lam, Yeuk Hay (1)
-
Liu, Yuan (1)
-
Venkatesh, Akshay (1)
-
Wake, Preston (1)
-
Wang, Jiuya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Several authors have studied homomorphisms from first homology groups of modular curves to$$K_2(X)$$, with$$X$$either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a$$1$$-cocycle from$$\mathrm {GL}_2(\mathbb {Z})$$to the second$$K$$-group of the function field of a suitable group scheme over$$X$$, from which the maps of interest arise by specialization.more » « less
-
Sharifi, Romyar (, Journal of the European Mathematical Society)In a groundbreaking paper, T. Fukaya and K. Kato proved a slight weakening of a conjecture of the author under an assumption that a Kubota–Leopoldtp-adicL-function has no multiple zeros. This article describes a refinement of their method that sheds light on the role of thep-adicL-function.more » « less
-
Lam, Yeuk Hay; Liu, Yuan; Sharifi, Romyar; Wake, Preston; Wang, Jiuya (, Forum of Mathematics, Sigma)Abstract Given a profinite group G of finite p -cohomological dimension and a pro- p quotient H of G by a closed normal subgroup N , we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H . We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H , we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H . We apply our study to prove lower bounds on the p -ranks of class groups of certain nonabelian extensions of $$\mathbb {Q}$$ and to give a new proof of the vanishing of Massey triple products in Galois cohomology.more » « less
An official website of the United States government
