skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2101889

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Several authors have studied homomorphisms from first homology groups of modular curves to$$K_2(X)$$, with$$X$$either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a$$1$$-cocycle from$$\mathrm {GL}_2(\mathbb {Z})$$to the second$$K$$-group of the function field of a suitable group scheme over$$X$$, from which the maps of interest arise by specialization. 
    more » « less
  2. In a groundbreaking paper, T. Fukaya and K. Kato proved a slight weakening of a conjecture of the author under an assumption that a Kubota–Leopoldtp-adicL-function has no multiple zeros. This article describes a refinement of their method that sheds light on the role of thep-adicL-function. 
    more » « less
  3. Abstract Given a profinite group G of finite p -cohomological dimension and a pro- p quotient H of G by a closed normal subgroup N , we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H . We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H , we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H . We apply our study to prove lower bounds on the p -ranks of class groups of certain nonabelian extensions of $$\mathbb {Q}$$ and to give a new proof of the vanishing of Massey triple products in Galois cohomology. 
    more » « less