skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eisenstein cocycles in motivic cohomology
Several authors have studied homomorphisms from first homology groups of modular curves to$$K_2(X)$$, with$$X$$either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a$$1$$-cocycle from$$\mathrm {GL}_2(\mathbb {Z})$$to the second$$K$$-group of the function field of a suitable group scheme over$$X$$, from which the maps of interest arise by specialization.  more » « less
Award ID(s):
2101889
PAR ID:
10644565
Author(s) / Creator(s):
;
Publisher / Repository:
Foundation Compositio Mathematica
Date Published:
Journal Name:
Compositio Mathematica
Volume:
160
Issue:
10
ISSN:
0010-437X
Page Range / eLocation ID:
2407 to 2479
Subject(s) / Keyword(s):
Eisenstein cocycles Manin symbols Steinberg symbols motivic cohomology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let$$X$$be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring$$R$$, and$$\mathfrak {m}$$a modulus on$$X$$, given by a closed subscheme of$$X$$which is geometrically reduced. The generalized Jacobian$$J_\mathfrak {m}$$of$$X$$with respect to$$\mathfrak {m}$$is then an extension of the Jacobian of$$X$$by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular model of$$X$$over$$R$$. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves$$X_0(N)$$with moduli supported on the cusps. 
    more » « less
  2. Abstract We consider manifold-knot pairs$$(Y,K)$$, whereYis a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface$$\Sigma $$in a homology ballX, such that$$\partial (X, \Sigma ) = (Y, K)$$can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from$$(Y, K)$$to any knot in$$S^3$$can be arbitrarily large. The proof relies on Heegaard Floer homology. 
    more » « less
  3. We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus$$g>1$$whose Jacobians have Mordell–Weil rank$$g$$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients$$X_0^+(N)$$of prime level$$N$$, the curve$$X_{S_4}(13)$$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve$$X_{\scriptstyle \mathrm { ns}} ^+ (17)$$. 
    more » « less
  4. Abstract This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functorson the category of locally compact separable metric spaces each factor into (i) what we term theirdefinable version, a functortaking values in the category$$\mathsf {GPC}$$ofgroups with a Polish cover(a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from$$\mathsf {GPC}$$to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes ofd-spheres ord-tori for any$$d\geq 1$$, and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functorsto show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement$$S^3\backslash \Sigma $$to the$$2$$-sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functorsadmit two main formulations: a more combinatorial one and a more homotopical formulation as the group$$[X,P]$$of homotopy classes of maps fromXto a polyhedral$$K(G,n)$$spaceP. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space$$\mathrm {Map}(X,P)$$in terms of its subset ofphantom maps; relatedly, we provide a topological characterization of this set for any locally compact Polish spaceXand polyhedronP. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces$$\mathrm {Map}(X,P)$$, a relation which, together with the more combinatorial incarnation of, embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that ifPis a polyhedralH-group, then this relation is both Borel and idealistic. In consequence,$$[X,P]$$falls in the category ofdefinable groups, an extension of the category$$\mathsf {GPC}$$introduced herein for its regularity properties, which facilitate several of the aforementioned computations. 
    more » « less
  5. Abstract Every Thurston map$$f\colon S^2\rightarrow S^2$$on a$$2$$-sphere$$S^2$$induces a pull-back operation on Jordan curves$$\alpha \subset S^2\smallsetminus {P_f}$$, where$${P_f}$$is the postcritical set off. Here the isotopy class$$[f^{-1}(\alpha )]$$(relative to$${P_f}$$) only depends on the isotopy class$$[\alpha ]$$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the mapfcan be seen as a fixed point of the pull-back operation. We show that if a Thurston mapfwith a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying$$2$$-sphere and construct a new Thurston map$$\widehat f$$for which this obstruction is eliminated. We prove that no other obstruction arises and so$$\widehat f$$is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem. 
    more » « less