Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract South American summer monsoon (SASM) strength tracks insolation on orbital timescales, linking global climate and continental hydrology. However, whether local water availability also responds to global climate forcings is unclear. Here, we present water balance records from Lake Junín, an Andean lake within the SASM domain. Local water balance and SASM strength is inferred from triple oxygen isotopes of lake carbonates during two interglacial periods (Marine Isotope Stage (MIS) 15, 621–563 ka; the Holocene, 11.7–0 ka). We find SASM strength and water balance both follow the precession‐pacing of local summer insolation, with the driest conditions occurring at Lake Junín under weakened SASM conditions (and vice versa). Further, the largest variations occurred during MIS 15, when insolation was more variable than the Holocene. These results suggest that global climate influences South American hydrology on both the local and continental scales, with implications for tropical water resources, the atmospheric greenhouse effect, and ecosystem dynamics.more » « lessFree, publicly-accessible full text available August 28, 2026
- 
            Abstract Global climate during the Holocene was relatively stable compared to the late Pleistocene. However, evidence from lacustrine records in South America suggests that tropical latitudes experienced significant water balance variability during the Holocene, rather than quiescence. For example, a tight coupling between insolation and carbonate δ18O records from central Andean lakes (e.g., Lakes Junín, Pumacocha) suggest water balance is tied directly to South American summer monsoon (SASM) strength. However, lake carbonate δ18O records also incorporate information about temperature and evaporation. To overcome this ambiguity, clumped and triple oxygen isotope records can provide independent constraints on temperature and evaporation. Here, we use clumped and triple oxygen isotopes to develop Holocene temperature and evaporation records from three central Andean lakes, Lakes Junín, Pumacocha, and Mehcocha, to build a more complete picture of regional water balance (P–E). We find that Holocene water temperatures at all three lakes were stable and slightly warmer than during the latest Pleistocene. These results are consistent with global data assimilations and records from the foothills and Amazon basin. In contrast, evaporation was highly variable and tracks SASM intensity. The hydrologic response of each lake to SASM depends greatly on the physical characteristics of the lake basin, but they all record peak evaporation in the early to mid‐Holocene (11,700 to 4,200 years BP) when regional insolation was relatively low and the SASM was weak. These results corroborate other central Andean records and suggest synchronous, widespread water stress tracks insolation‐paced variability in SASM strength.more » « less
- 
            This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Lake. The data include parameters of paleolimnology (hydrogen isotopes) with a geographic location of Peru. The time period coverage is from 42395 to -59 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
