skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2103245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ellipsoid embedding function of a symplectic manifold gives the smallest amount by which the symplectic form must be scaled in order for a standard ellipsoid of the given eccentricity to embed symplectically into the manifold. It was first computed for the standard four‐ball (or equivalently, the complex projective plane) by McDuff and Schlenk, and found to contain the unexpected structure of an “infinite staircase,” that is, an infinite sequence of nonsmooth points arranged in a piecewise linear stair‐step pattern. Later work of Usher and Cristofaro‐Gardiner–Holm–Mandini–Pires suggested that while four‐dimensional symplectic toric manifolds with infinite staircases are plentiful, they are highly nongeneric. This paper concludes the systematic study of one‐point blowups of the complex projective plane, building on previous work of Bertozzi‐Holm‐Maw‐McDuff‐Mwakyoma‐Pires‐Weiler, Magill‐McDuff, Magill‐McDuff‐Weiler, and Magill on these Hirzebruch surfaces. We prove a conjecture of Cristofaro‐Gardiner–Holm–Mandini–Pires for this family: that if the blowup is of rational weight and the embedding function has an infinite staircase then that weight must be . We show also that the function for this manifold does not have a descending staircase. Furthermore, we give a sufficient and necessary condition for the existence of an infinite staircase in this family which boils down to solving a quadratic equation and computing the function at one specific value. Many of our intermediate results also apply to the case of the polydisk (or equivalently, the symplectic product of two spheres). 
    more » « less
  2. Free, publicly-accessible full text available June 1, 2026
  3. The ellipsoidal capacity function of a symplectic four manifoldXmeasures how much the form onXmust be dilated in order for it to admit an embedded ellipsoid of eccentricityz. In most cases there are just finitely many obstructions to such an embedding besides the volume. If there are infinitely many obstructions,Xis said to have a staircase. This paper gives an almost complete description of the staircases in the ellipsoidal capacity functions of the family of symplectic Hirzebruch surfacesH_{b}formed by blowing up the projective plane with weightb. We describe an interweaving, recursively defined, family of obstructions to symplectic embeddings of ellipsoids that show there is an open dense set of shape parametersbthat are blocked, i.e. have no staircase, and an uncountable number of other values ofbthat do admit staircases. The remainingb-values form a countable sequence of special rational numbers that are closely related to the symmetries discussed in Magill–McDuff (arXiv:2106.09143). We show that none of them admit ascending staircases. Conjecturally, none admit descending staircases. Finally, we show that, as long asbis not one of these special rational values, any staircase inH_{b}has irrational accumulation point. A crucial ingredient of our proofs is the new, more indirect approach to using almost toric fibrations in the analysis of staircases by Magill (arXiv:2204.12460). In particular, the structure of the relevant mutations of the set of almost toric fibrations onH_{b}is echoed in the structure of the set of blockedb-intervals. 
    more » « less
  4. Knot filtered embedded contact homology was first introduced by Hutchings in 2015; it has been computed for the standard transverse unknot in irrational ellipsoids by Hutchings and for the Hopf link in lens spaces via a quotient by Weiler. While toric constructions can be used to understand the ECH chain complexes of many contact forms adapted to open books with binding the unknot and Hopf link, they do not readily adapt to general torus knots and links. In this paper, we generalize the definition and invariance of knot filtered embedded contact homology to allow for degenerate knots with rational rotation numbers. We then develop new methods for understanding the embedded contact homology chain complex of positive torus knotted fibrations of the standard tight contact 3‐sphere in terms of their presentation as open books and as Seifert fiber spaces. We provide Morse–Bott methods, using a doubly filtered complex and the energy filtered perturbed Seiberg–Witten Floer theory developed by Hutchings and Taubes, and use them to compute the knot filtered embedded contact homology, for odd and positive. 
    more » « less