We produce simply-connected, minimal, symplectic Lefschetz fibrations realizing all the lattice points in the symplectic geography plane below the Noether line. This provides asymplecticextension of the classical works populating the complex geography plane with holomorphic Lefschetz fibrations. Our examples are obtained by rationally blowing down Lefschetz fibrations with clustered nodal fibers, the total spaces of which are potentially new homotopy elliptic surfaces. Similarly, clustering nodal fibers on higher genera Lefschetz fibrations on standard rational surfaces, we get rational blowdown configurations that yield new constructions of small symplectic exotic –manifolds. We present an example of a construction of a minimal symplectic exotic through this procedure applied to a genus– fibration.
more »
« less
Staircase patterns in Hirzebruch surfaces
The ellipsoidal capacity function of a symplectic four manifoldXmeasures how much the form onXmust be dilated in order for it to admit an embedded ellipsoid of eccentricityz. In most cases there are just finitely many obstructions to such an embedding besides the volume. If there are infinitely many obstructions,Xis said to have a staircase. This paper gives an almost complete description of the staircases in the ellipsoidal capacity functions of the family of symplectic Hirzebruch surfacesH_{b}formed by blowing up the projective plane with weightb. We describe an interweaving, recursively defined, family of obstructions to symplectic embeddings of ellipsoids that show there is an open dense set of shape parametersbthat are blocked, i.e. have no staircase, and an uncountable number of other values ofbthat do admit staircases. The remainingb-values form a countable sequence of special rational numbers that are closely related to the symmetries discussed in Magill–McDuff (arXiv:2106.09143). We show that none of them admit ascending staircases. Conjecturally, none admit descending staircases. Finally, we show that, as long asbis not one of these special rational values, any staircase inH_{b}has irrational accumulation point. A crucial ingredient of our proofs is the new, more indirect approach to using almost toric fibrations in the analysis of staircases by Magill (arXiv:2204.12460). In particular, the structure of the relevant mutations of the set of almost toric fibrations onH_{b}is echoed in the structure of the set of blockedb-intervals.
more »
« less
- Award ID(s):
- 2103245
- PAR ID:
- 10653945
- Publisher / Repository:
- Commentarii Mathematici Helvetici
- Date Published:
- Journal Name:
- Commentarii Mathematici Helvetici
- Volume:
- 99
- Issue:
- 3
- ISSN:
- 0010-2571
- Page Range / eLocation ID:
- 437 to 555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop techniques to construct explicit symplectic Lefschetz fibrations over the2-sphere with any prescribed signature\sigmaand any spin type when\sigmais divisible by16. This solves a long-standing conjecture on the existence of such fibrations with positive signature. As applications, we produce symplectic4-manifolds that are homeomorphic but not diffeomorphic to connected sums ofS^2 \times S^2, with the smallest topology known to date, as well as larger examples as symplectic Lefschetz fibrations.more » « less
-
Abstract This article introduces a new method to construct volume-filling symplectic embeddings of 4-dimensional ellipsoids by employing polytope mutations in toric and almost toric varieties. The construction uniformly recovers the full sequences for the Fibonacci Staircase of McDuff–Schlenk, the Pell Staircase of Frenkel–Müller and the Cristofaro-Gardiner–Kleinman Staircase, and adds new infinite sequences of ellipsoid embeddings. In addition, we initiate the study of symplectic-tropical curves for almost toric fibrations and emphasize the connection to quiver combinatorics.more » « less
-
Abstract Consider a locally cartesian closed category with an object$$\mathbb{I}$$and a class of trivial fibrations, which admit sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps whose Leibniz exponential with the generic point of$$\mathbb{I}$$defines a trivial fibration. Then the fibrations are also closed under pushforward.more » « less
-
It is a long-standing conjecture that all symplectic capacities which are equal to the Gromov width for ellipsoids coincide on a class of convex domains in\mathbb{R}^{2n}. It is known that they coincide for monotone toric domains in all dimensions. In this paper, we study whether requiring a capacity to be equal to thekth Ekeland–Hofer capacity for all ellipsoids can characterize it on a class of domains. We prove that fork=n=2, this holds for convex toric domains, but not for all monotone toric domains. We also prove that, fork=n\ge 3, this does not hold even for convex toric domains.more » « less
An official website of the United States government

