skip to main content


Search for: All records

Award ID contains: 2103662

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections.

     
    more » « less
    Free, publicly-accessible full text available April 30, 2025
  2. Abstract The response of the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) interferometers is known to vary with time (Tuyenbayev et al 2017 Class. Quantum Grav. 34 015002). Accurate calibration of the interferometers must therefore track and compensate for temporal variations in calibration model parameters. These variations were tracked during the first three Advanced LIGO observing runs, and compensation for some of them has been implemented in the calibration procedure. During the second observing run, multiplicative corrections to the interferometer response were applied while producing calibrated strain data both in real time and in high latency. In a high-latency calibration produced after the second observing run and during the entirety of the third observing run, a correction requiring periodic filter updates was applied to the calibration–the time dependence of the coupled cavity pole frequency f c c . This paper describes the methods developed to compensate for variations in the interferometer response requiring time-dependent filters, including variable zeros, poles, gains, and time delays. The described methods were used to provide compensation for well-modeled time dependence of the interferometer response, which has helped to reduce systematic errors in the calibration to < 2% in magnitude and < 2 ∘ in phase across LIGO’s most sensitive frequency band of 20–2000 Hz (Sun et al 2020 Class. Quantum Grav. 37 225008; Sun et al 2021 arXiv:2107.00129 [astro-ph.IM]). Additionally, this paper shows how such compensation is relevant for astrophysical inference studies by reducing uncertainty and bias in the sky localization for a simulated binary neutron star merger. 
    more » « less