skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 31, 2025

Title: Search for Gravitational-lensing Signatures in the Full Third Observing Run of the LIGO–Virgo Network
Abstract

Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

 
more » « less
Award ID(s):
2207758 2110509
NSF-PAR ID:
10533123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
the American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
970
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses. 
    more » « less
  2. ABSTRACT

    Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations.

     
    more » « less
  3. ABSTRACT

    Gravitational lensing is the phenomenon where the presence of matter (called a lens) bends the path of light-like trajectories travelling nearby. Similar to the geometric optics limit of electromagnetic waves, gravitational lensing of gravitational waves (GWs) can occur in geometric optics condition when GW wavelength is much smaller than the Schwarzschild radius of the lens, that is, $\lambda _{\mathrm{ GW}} \ll$R$^{\rm s}_{\rm lens}$. This is known as the strong lensing regime for which a multiple-image system with different magnifications and phase shifts is formed. We developed GLANCE, Gravitational Lensing Authenticator using Non-modelled Cross-correlation Exploration, a novel technique to detect strongly lensed GW signals. We demonstrate that cross-correlation between two noisy reconstruction of polarized GW signals shows a non-zero value when the signals are lensed counterparts. The relative strength between the signal cross-correlation and noise cross-correlation can quantify the significance of the event(s) being lensed. Since lensing biases the inference of source parameters, primarily the luminosity distance, a joint parameter estimation of the source and lens-induced parameters is incorporated using a Bayesian framework. We applied GLANCE to synthetic strong lensing data and showed that it can detect lensed GW signals and correctly constrain the injected source and lens parameters, even when one of the signals is below match-filtered threshold signal-to-noise ratio. This demonstrates GLANCE’s capability as a robust detection technique for strongly lensed GW signals and can distinguish between lensed and unlensed events.

     
    more » « less
  4. ABSTRACT

    In this study, we investigate the impact of microlensing on gravitational wave (GW) signals in the LIGO−Virgo sensitivity band. Microlensing caused by an isolated point lens, with (redshifted) mass ranging from MLz ∈ (1,  105) M⊙ and impact parameter y ∈ (0.01,  5), can result in a maximum mismatch of $\sim 30~{{\ \rm per\ cent}}$ with their unlensed counterparts. When y < 1, it strongly anticorrelates with the luminosity distance enhancing the detection horizon and signal-to-noise ratio (SNR). Biases in inferred source parameters are assessed, with in-plane spin components being the most affected intrinsic parameters. The luminosity distance is often underestimated, while sky-localization and trigger times are mostly well-recovered. Study of a population of microlensed signals due to an isolated point lens primarily reveals: (i) using unlensed templates during the search causes fractional loss (20 per cent to 30 per cent) of potentially identifiable microlensed signals; (ii) the observed distribution of y challenges the notion of its high improbability at low values (y ≲ 1), especially for y ≲ 0.1; (iii) Bayes factor analysis of the population indicates that certain region in MLz − y parameter space have a higher probability of being detected and accurately identified as microlensed. Notably, the microlens parameters for the most compelling candidate identified in previous microlensing searches, GW200208_130117, fall within a 1σ range of the aforementioned higher probability region. Identifying microlensing signatures from MLz < 100 M⊙ remains challenging due to small microlensing effects at typical SNR values. Additionally, we also examined how microlensing from a population of microlenses influences the detection of strong lensing signatures in pairs of GW events, particularly in the posterior-overlap analysis.

     
    more » « less
  5. ABSTRACT

    As the number of detected gravitational wave sources increases with increased sensitivity of the gravitational wave observatories, observing strongly lensed pairs of events will become a real possibility. Lensed gravitational wave (GW) events will have very accurately measured time delays and magnification ratios. Suppose we identify the lens system corresponding to a GW event in the electromagnetic domain and also measure the redshifts of the lens and the host galaxy; in that case, we can use the GW event to constrain important astrophysical parameters of the lens system. As most lensing events have image separations that are significantly smaller than the GW event localization uncertainties, we must develop diagnostics that will aid in the robust identification of such lensed events. We define a new statistic based on the joint probability of lensing observables that can be used to discriminate lensed pairs of events from the unlensed ones. To this end, we carry out simulations of lensed GW events to infer the distribution of the relative time delays and relative magnifications subdivided by the type of lensed images. We compare this distribution to a similar one obtained for random unlensed event pairs. Our statistic can improve the search pipelines’ existing ranking approach to down-select event pairs for joint parameter estimates. The distributions we obtain can further be used to define more informative priors in joint parameter estimation analyses for candidate lensed events.

     
    more » « less