skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2103717

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 13, 2026
  2. We present an implementation of the relativistic ionization-potential (IP) equation-of-motion coupled-cluster (EOMCC) with up to 3-hole–2-particle (3h2p) excitations that makes use of the molecular mean-field exact two-component framework and the full Dirac–Coulomb–Breit Hamiltonian. The closed-shell nature of the reference state in an X2C-IP-EOMCC calculation allows for accurate predictions of spin–orbit splittings in open-shell molecules without breaking degeneracies, as would occur in an excitation-energy EOMCC calculation carried out directly on an unrestricted open-shell reference. We apply X2C-IP-EOMCC to the ground and first excited states of the HCCX+ (X = Cl, Br, I) cations, where it is demonstrated that a large basis set (i.e., quadruple-zeta quality) and 3h2p correlation effects are necessary for accurate absolute energetics. The maximum error in calculated adiabatic IPs is on the order of 0.1 eV, whereas spin–orbit splittings themselves are accurate to ≈0.01 eV, as compared to experimentally obtained values. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  3. Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear–electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing. A strategy is presented for calculating time-resolved vibrational and electronic absorption spectra from any initial condition. Although this strategy is general for any TDCI implementation, utilizing the NEO framework allows for the explicit inclusion of quantized nuclei, as illustrated through the calculation of vibrationally hot spectra. Time-resolved spectra produced by either vibrational or electronic Rabi oscillations capture ground-state absorption, stimulated emission, and excited-state absorption between vibronic states. This methodology provides the foundation for fully ab initio simulations of multidimensional spectroscopic experiments. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  4. Despite the power and flexibility of configuration interaction (CI) based methods in computational chemistry, their broader application is limited by an exponential increase in both computational and storage requirements, particularly due to the substantial memory needed for excitation lists that are crucial for scalable parallel computing. The objective of this work is to develop a new CI framework, namely, the small tensor product distributed active space (STP-DAS) framework, aimed at drastically reducing memory demands for extensive CI calculations on individual workstations or laptops, while simultaneously enhancing scalability for extensive parallel computing. Moreover, the STP-DAS framework can support various CI-based techniques, such as complete active space (CAS), restricted active space, generalized active space, multireference CI, and multireference perturbation theory, applicable to both relativistic (two- and four-component) and non-relativistic theories, thus extending the utility of CI methods in computational research. We conducted benchmark studies on a supercomputer to evaluate the storage needs, parallel scalability, and communication downtime using a realistic exact-two-component CASCI (X2C-CASCI) approach, covering a range of determinants from 109 to 1012. Additionally, we performed large X2C-CASCI calculations on a single laptop and examined how the STP-DAS partitioning affects performance. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Free, publicly-accessible full text available November 26, 2025