Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Due to the scarcity of reliable anomaly labels, recent anomaly detection methods leveraging noisy auto-generated labels either select clean samples or refurbish noisy labels. However, both approaches struggle due to the unique properties of anomalies.Sample selectionoften fails to separate sufficiently many clean anomaly samples from noisy ones, whilelabel refurbishmenterroneously refurbishesmarginalclean samples. To overcome these limitations, we design Unity, thefirstlearning from noisy labels (LNL) approach for anomaly detection that elegantly leverages the merits of both sample selection and label refurbishment to iteratively prepare a diverse clean sample set for network training. Unity uses a pair of deep anomaly networks to collaboratively select samples with clean labels based on prediction agreement, followed by a disagreement resolution mechanism to capture marginal samples with clean labels. Thereafter, Unity utilizes unique properties of anomalies to design an anomaly-centric contrastive learning strategy that accurately refurbishes the remaining noisy labels. The resulting set, composed ofselected and refurbishedclean samples, will be used to train the anomaly networks in the next training round. Our experimental study on 10 real-world benchmark datasets demonstrates that Unity consistently outperforms state-of-the-art LNL techniques by up to 0.31 in F-1 Score (0.52 \rightarrow 0.83).more » « lessFree, publicly-accessible full text available February 10, 2026
- 
            Log anomaly detection, critical in identifying system failures and preempting security breaches, finds irregular patterns within large volumes of log data. Modern log anomaly detectors rely on training deep learning models on clean anomaly-free log data. However, such clean log data requires expensive and tedious human labeling. In this paper, we thus propose a robust log anomaly detection framework, PlutoNOSPACE, that automatically selects a clean representative sample subset of the polluted log sequence data to train a Transformer-based anomaly detection model. Pluto features three innovations. First, due to localized concentrations of anomalies inherent in the embedding space of log data, Pluto partitions the sequence embedding space generated by the model into regions that then allow it to identify and discard regions that are highly polluted by our pollution level estimation scheme, based on our pollution quantification via Gaussian mixture modeling. Second, for the remaining more slightly polluted regions, we select samples that maximally purify the eigenvector spectrum, which can be transformed into the NP-hard facility location problem; allowing us to leverage its greedy solution with a (1-(1/e)) approximation guarantee in optimality. Third, by iteratively alternating between the above subset selection, a model re-training on the latest subset, and a subset filtering using dynamic training artifacts generated by the latest model, the data selected is progressively refined. The final sample set is used to retrain the final anomaly detection model. Our experiments on four real-world log benchmark datasets demonstrate that by retaining 77.7% (BGL) to 96.6% (ThunderBird) of the normal sequences while effectively removing 90.3% (BGL) to 100.0% (ThunderBird, HDFS) of the anomalies, Pluto provides a significant absolute F-1 improvement up to 68.86% (2.16% → 71.02%) compared to the state-of-the-art sample selection methods. The implementation of this work is available at https://github.com/LeiMa0324/Pluto-SIGMOD25.more » « less
- 
            Log anomaly detection, critical in identifying system failures and preempting security breaches, finds irregular patterns within large volumes of log data. Modern log anomaly detectors rely on training deep learning models on clean anomaly-free log data. However, such clean log data requires expensive and tedious human labeling. In this paper, we thus propose a robust log anomaly detection framework, PlutoNOSPACE, that automatically selects a clean representative sample subset of the polluted log sequence data to train a Transformer-based anomaly detection model. Pluto features three innovations. First, due to localized concentrations of anomalies inherent in the embedding space of log data, Pluto partitions the sequence embedding space generated by the model into regions that then allow it to identify and discard regions that are highly polluted by our pollution level estimation scheme, based on our pollution quantification via Gaussian mixture modeling. Second, for the remaining more slightly polluted regions, we select samples that maximally purify the eigenvector spectrum, which can be transformed into the NP-hard facility location problem; allowing us to leverage its greedy solution with a (1-(1/e)) approximation guarantee in optimality. Third, by iteratively alternating between the above subset selection, a model re-training on the latest subset, and a subset filtering using dynamic training artifacts generated by the latest model, the data selected is progressively refined. The final sample set is used to retrain the final anomaly detection model. Our experiments on four real-world log benchmark datasets demonstrate that by retaining 77.7\% (BGL) to 96.6\% (ThunderBird) of the normal sequences while effectively removing 90.3\% (BGL) to 100.0\% (ThunderBird, HDFS) of the anomalies, Pluto provides a significant absolute F-1 improvement up to 68.86\% (2.16\% → 71.02\%) compared to the state-of-the-art sample selection methods. The implementation of this work is available at https://github.com/LeiMa0324/Pluto-SIGMOD25.more » « less
- 
            Outlier detection is critical in real world. Due to the existence of many outlier detection techniques which often return different results for the same data set, the users have to address the problem of determining which among these techniques is the best suited for their task and tune its parameters. This is particularly challenging in the unsupervised setting, where no labels are available for cross-validation needed for such method and parameter optimization. In this work, we propose AutoOD which uses the existing unsupervised detection techniques to automatically produce high quality outliers without any human tuning. AutoOD's fundamentally new strategy unifies the merits of unsupervised outlier detection and supervised classification within one integrated solution. It automatically tests a diverse set of unsupervised outlier detectors on a target data set, extracts useful signals from their combined detection results to reliably capture key differences between outliers and inliers. It then uses these signals to produce a "custom outlier classifier" to classify outliers, with its accuracy comparable to supervised outlier classification models trained with ground truth labels - without having access to the much needed labels. On a diverse set of benchmark outlier detection datasets, AutoOD consistently outperforms the best unsupervised outlier detector selected from hundreds of detectors. It also outperforms other tuning-free approaches from 12 to 97 points (out of 100) in the F-1 score.more » « less
- 
            Anomaly detection is a critical task in applications like preventing financial fraud, system malfunctions, and cybersecurity attacks. While previous research has offered a plethora of anomaly detection algorithms, effective anomaly detection remains challenging for users due to the tedious manual tuning process. Currently, model developers must determine which of these numerous algorithms is best suited for their particular domain and then must tune many parameters by hand to make the chosen algorithm perform well. This demonstration showcases AutoOD, the first unsupervised self-tuning anomaly detection system which frees users from this tedious manual tuning process. AutoOD outperforms the best un-supervised anomaly detection methods it deploys, with its performance similar to those of supervised anomaly classification models, yet without requiring ground truth labels. Our easy-to-use visual interface allows users to gain insights into AutoOD's self-tuning process and explore the underlying patterns within their datasets.more » « less
- 
            Cutting-edge machine learning techniques often require millions of labeled data objects to train a robust model. Because relying on humans to supply such a huge number of labels is rarely practical, automated methods for label generation are needed. Unfortunately, critical challenges in auto-labeling remain unsolved, including the following research questions: (1) which objects to ask humans to label, (2) how to automatically propagate labels to other objects, and (3) when to stop labeling. These three questions are not only each challenging in their own right, but they also correspond to tightly interdependent problems. Yet existing techniques provide at best isolated solutions to a subset of these challenges. In this work, we propose the first approach, called LANCET, that successfully addresses all three challenges in an integrated framework. LANCET is based on a theoretical foundation characterizing the properties that the labeled dataset must satisfy to train an effective prediction model, namely the Covariate-shift and the Continuity conditions. First, guided by the Covariate-shift condition, LANCET maps raw input data into a semantic feature space, where an unlabeled object is expected to share the same label with its near-by labeled neighbor. Next, guided by the Continuity condition, LANCET selects objects for labeling, aiming to ensure that unlabeled objects always have some sufficiently close labeled neighbors. These two strategies jointly maximize the accuracy of the automatically produced labels and the prediction accuracy of the machine learning models trained on these labels. Lastly, LANCET uses a distribution matching network to verify whether both the Covariate-shift and Continuity conditions hold, in which case it would be safe to terminate the labeling process. Our experiments on diverse public data sets demonstrate that LANCET consistently outperforms the state-of-the-art methods from Snuba to GOGGLES and other baselines by a large margin - up to 30 percentage points increase in accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available