skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104105

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Based on historical developments and the current state of the art in gas-phase transmission electron microscopy (GP-TEM), we provide a perspective covering exciting new technologies and methodologies of relevance for chemical and surface sciences. Considering thermal and photochemical reaction environments, we emphasize the benefit of implementing gas cells, quantitative TEM approaches using sensitive detection for structured electron illumination (in space and time) and data denoising, optical excitation, and data mining using autonomous machine learning techniques. These emerging advances open new ways to accelerate discoveries in chemical and surface sciences. Graphical abstract 
    more » « less
  2. Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available July 1, 2026
  5. Free, publicly-accessible full text available March 1, 2026
  6. Materials functionalities may be associated with atomic-level structural dynamics occurring on the millisecond timescale. However, the capability of electron microscopy to image structures with high spatial resolution and millisecond temporal resolution is often limited by poor signal-to-noise ratios. With an unsupervised deep denoising framework, we observed metal nanoparticle surfaces (platinum nanoparticles on cerium oxide) in a gas environment with time resolutions down to 10 milliseconds at a moderate electron dose. On this timescale, many nanoparticle surfaces continuously transition between ordered and disordered configurations. Stress fields can penetrate below the surface, leading to defect formation and destabilization, thus making the nanoparticle fluxional. Combining this unsupervised denoiser with in situ electron microscopy greatly improves spatiotemporal characterization, opening a new window for the exploration of atomic-level structural dynamics in materials. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026