Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Immersed finite element methods provide a convenient analysis framework for problems involving geometrically complex domains, such as those found in topology optimization and microstructures for engineered materials. However, their implementation remains a major challenge due to, among other things, the need to apply nontrivial stabilization schemes and generate custom quadrature rules. This article introduces the robust and computationally efficient algorithms and data structures comprising an immersed finite element preprocessing framework. The input to the preprocessor consists of a background mesh and one or more geometries defined on its domain. The output is structured into groups of elements with custom quadrature rules formatted such that common finite element assembly routines may be used without or with only minimal modifications. The key to the preprocessing framework is the construction of material topology information, concurrently with the generation of a quadrature rule, which is then used to perform enrichment and generate stabilization rules. While the algorithmic framework applies to a wide range of immersed finite element methods using different types of meshes, integration, and stabilization schemes, the preprocessor is presented within the context of the extended isogeometric analysis. This method utilizes a structured B-spline mesh, a generalized Heaviside enrichment strategy considering the material layout within individual basis functions’ supports, and face-oriented ghost stabilization. Using a set of examples, the effectiveness of the enrichment and stabilization strategies is demonstrated alongside the preprocessor’s robustness in geometric edge cases. Additionally, the performance and parallel scalability of the implementation are evaluated.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.more » « less
-
Free, publicly-accessible full text available November 1, 2026
An official website of the United States government
