Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.
more »
« less
This content will become publicly available on December 1, 2026
Enriched immersed finite element and isogeometric analysis: algorithms and data structures
Abstract Immersed finite element methods provide a convenient analysis framework for problems involving geometrically complex domains, such as those found in topology optimization and microstructures for engineered materials. However, their implementation remains a major challenge due to, among other things, the need to apply nontrivial stabilization schemes and generate custom quadrature rules. This article introduces the robust and computationally efficient algorithms and data structures comprising an immersed finite element preprocessing framework. The input to the preprocessor consists of a background mesh and one or more geometries defined on its domain. The output is structured into groups of elements with custom quadrature rules formatted such that common finite element assembly routines may be used without or with only minimal modifications. The key to the preprocessing framework is the construction of material topology information, concurrently with the generation of a quadrature rule, which is then used to perform enrichment and generate stabilization rules. While the algorithmic framework applies to a wide range of immersed finite element methods using different types of meshes, integration, and stabilization schemes, the preprocessor is presented within the context of the extended isogeometric analysis. This method utilizes a structured B-spline mesh, a generalized Heaviside enrichment strategy considering the material layout within individual basis functions’ supports, and face-oriented ghost stabilization. Using a set of examples, the effectiveness of the enrichment and stabilization strategies is demonstrated alongside the preprocessor’s robustness in geometric edge cases. Additionally, the performance and parallel scalability of the implementation are evaluated.
more »
« less
- Award ID(s):
- 2104106
- PAR ID:
- 10655131
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Engineering with Computers
- Volume:
- 41
- Issue:
- 6
- ISSN:
- 0177-0667
- Page Range / eLocation ID:
- 3919 to 3957
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a high order immersed finite element (IFE) method for solving 1D parabolic interface problems. These methods allow the solution mesh to be independent of the interface. Time marching schemes including Backward-Eulerand Crank-Nicolson methods are implemented to fully discretize the system. Numerical examples are provided to test the performance of our numerical schemes.more » « less
-
Finite element methods for electromagnetic problems modeled by Maxwell-type equations are highly sensitive to the conformity of approximation spaces, and non-conforming methods may cause loss of convergence. This fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the literature regarding the application to electromagnetic interface problems, as they are based on non-conforming spaces. In this work, a novel immersed virtual element method for solving a three-dimensional (3D) H(curl) interface problem is developed, and the motivation is to combine the conformity of virtual element spaces and robust approximation capabilities of immersed finite element spaces. The proposed method is able to achieve optimal convergence. To develop a systematic framework, the [Formula: see text], H(curl) and H(div) interface problems and their corresponding problem-orientated immersed virtual element spaces are considered all together. In addition, the de Rham complex will be established based on which the Hiptmair–Xu (HX) preconditioner can be used to develop a fast solver for the H(curl) interface problem.more » « less
-
One of classical tasks of the network synthesis is to construct ROMs realized via ladder networks matching rational approximations of a targeted filter transfer function. The inverse scattering can be also viewed in the network synthesis framework. The key is continuum interpretation of the synthesized network in terms of the underlying medium properties, aka embedding. We describe such an embedding via finite-difference quadrature rules (FDQR), that can be viewed as extension of the concept of the Gaussian quadrature to finite-difference schemes. One of application of this approach is the solution of earlier intractable large scale inverse scattering problems. We also discuss an important open question in the FDQR related to Lothar’s earlier contributions, in particular, a possibility of finite-difference Gauss-Kronrod rulesmore » « less
-
We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.more » « less
An official website of the United States government
