skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104656

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The emerging class of multi-principal element alloy (MPEA) processes superior mechanical properties and has great potential for applications in extreme environments. In this work, the synergic effect of the Cr content and crystallographic orientation on the deformation behaviors of single-crystal CrCoFeNi MPEAs has been investigated by atomistic simulations. We have found distinct differences in dislocation activities, deformation microstructures, and mechanical behaviors in the model MPEAs, which depend on crystallographic orientations, Cr concentration, and the number of activated slip systems. When multiple slip systems are triggered along [100] and [111] orientations, Shockley partial activation and their interaction are predominant, leading to the formation of sessile dislocations and a dense dislocation network. When only two slip systems of Shockley partials are favored along the [110] direction, the influence of Cr concentration and planner defect energies emerges. At low Cr concentration, the double planar slip of Shockley partials results in deformation-induced nanotwins. At high Cr concentration, the partial dislocations of a single slip plane become dominant, attaining the highest volume fraction of deformation-induced phase transformation. The results provide a fundamental understanding of deformation mechanisms in MPEAs, elucidating the synergic effect of crystal orientation and composition on tunning the mechanical behaviors. 
    more » « less