Bulk, polycrystalline (Co, Cu, Mg, Ni, Zn)O was synthesized using solid-state sintering. Micropillars were prepared and mechanically deformed along three crystallographic orientations: (001), (101), and (111). Pillars (001) and (111) cracked, while Pillar (101) remained intact. Pillars (001) and (101) exhibited activated slip systems, confirmed by a large stress drop, and the presence of slip bands, respectively. Schmid factor (SF) analysis was performed to examine the effect of grain orientations on dislocation activity and slip behavior. SF values range from 0 to 0.5, with non-zero values indicating potential for slip. Six slip systems exist in the (Co, Cu, Mg, Ni, Zn)O rock salt crystal structure: 1/2⟨110⟩11¯0. For the (001) orientation, four slip systems are potentially active (SF = 0.5). For the (101) orientation, there are four potentially active slip systems (SF = 0.25). For the (111) orientation, no potentially active slips systems exist (SF = 0). Dislocation structures, which were observed post-compression via transmission electron microscopy, demonstrated variations in size, number, and distribution across the pillar, depending on micropillar orientation. Entangled dislocations created misorientation in Pillar (001), which led to the possible formation of subgrains, while singular dislocations were observed in Pillar (101), and a lack of dislocations was observed in Pillar (111). Zener–Stroh type dislocation entanglement-mediated cracking is the proposed cause of the transgranular-type cracks in Pillar (001). The possible subgrain formation, or lack of formation, respectively, caused intergranular-type cracks to additionally form in Pillar (001), while Pillar (111) only exhibited transgranular-type brittle fracture. In combination, these findings highlight the importance of dislocation activity, without the need for elevated temperature, and grain orientation in controlling the mechanical deformation response in single-phase (Co, Cu, Mg, Ni, Zn)O.
The emerging class of multi-principal element alloy (MPEA) processes superior mechanical properties and has great potential for applications in extreme environments. In this work, the synergic effect of the Cr content and crystallographic orientation on the deformation behaviors of single-crystal CrCoFeNi MPEAs has been investigated by atomistic simulations. We have found distinct differences in dislocation activities, deformation microstructures, and mechanical behaviors in the model MPEAs, which depend on crystallographic orientations, Cr concentration, and the number of activated slip systems. When multiple slip systems are triggered along [100] and [111] orientations, Shockley partial activation and their interaction are predominant, leading to the formation of sessile dislocations and a dense dislocation network. When only two slip systems of Shockley partials are favored along the [110] direction, the influence of Cr concentration and planner defect energies emerges. At low Cr concentration, the double planar slip of Shockley partials results in deformation-induced nanotwins. At high Cr concentration, the partial dislocations of a single slip plane become dominant, attaining the highest volume fraction of deformation-induced phase transformation. The results provide a fundamental understanding of deformation mechanisms in MPEAs, elucidating the synergic effect of crystal orientation and composition on tunning the mechanical behaviors.
more » « less- NSF-PAR ID:
- 10522713
- Publisher / Repository:
- Journal of Applied Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 133
- Issue:
- 19
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mechanical properties are fundamental to structural materials, where dislocations play a decisive role in describing their mechanical behavior. Although the high-yield stresses of multiprincipal element alloys (MPEAs) have received extensive attention in the last decade, the relation between their mechanistic origins remains elusive. Our multiscale study of density functional theory, atomistic simulations, and high-resolution microscopy shows that the excellent mechanical properties of MPEAs have diverse origins. The strengthening effects through Shockley partials and stacking faults can be decoupled in MPEAs, breaking the conventional wisdom that low stacking fault energies are coupled with wide partial dislocations. This study clarifies the mechanistic origins for the strengthening effects, laying the foundation for physics-informed predictive models for materials design.more » « less
-
Abstract Dislocations, linear defects in a crystalline lattice characterized by their slip systems, can provide a record of grain internal deformation. Comprehensive examination of this record has been limited by intrinsic limitations of the observational methods. Transmission electron microscopy reveals individual dislocations, but images only a few square
m of sample. Oxidative decoration requires involved sample preparation and has uncertainties in detection of all dislocations and their types. The possibility of mapping dislocation density and slip systems by conventional (Hough-transform based) EBSD is investigated here with naturally and experimentally deformed San Carlos olivine single crystals. Geometry and dislocation structures of crystals deformed in orientations designed to activate particular slip systems were previously analyzed by TEM and oxidative decoration. A curvature tensor is calculated from changes in orientation of the crystal lattice, which is inverted to calculate density of geometrically necessary dislocations with the Matlab Toolbox MTEX. Densities of individual dislocation types along with misorientation axes are compared to orientation change measured on the deformed crystals. After filtering (denoising), noise floor and calculated dislocation densities are comparable to those reported from high resolution EBSD mapping. For samples deformed in [110]c and [011]c orientations EBSD mapping confirms [100](010) and [001](010), respectively, as the dominant slip systems. EBSD mapping thus enables relatively efficient observation of dislocation structures associated with intracrystalline deformation, both distributed, and localized at sub-boundaries, over substantially larger areas than has previously been possible. This will enable mapping of dislocation structures in both naturally and experimentally deformed polycrystals, with potentially new insights into deformation processes in Earth’s upper mantle.$$\upmu$$ -
Schuh, Christopher A (Ed.)The {-1012} tensile twins terminating inside the grains of a deformed Mg-Y alloy were investigated by transmission electron microscopy. The crystallographic features of terminating twins and associated slip structures were quantified and correlated. The local stresses developed at a terminating {-1012} twin were computed using crystal plasticity simulations in order to interpret the observed slip patterns. Results indicate that both basal andmore » « less
matrix glide were involved in accommodating the plastic stresses developed in the vicinity of terminating twins. Along the twin boundary, the defect contrast consistent with that of lattice dislocations and twinning partials was observed. Based on these observations, a dislocation reaction is proposed that establishes an interrelationship between the observed matrix glide and {-1012} twinning in Mg-Y alloys. -
For the past century, dislocations have been understood to be the carriers of plastic deformation in crystalline solids. However, their collective behavior is still poorly understood. Progress in understanding the collective behavior of dislocations has primarily come in one of two modes: the simulation of systems of interacting discrete dislocations and the treatment of density measures of varying complexity that are considered as continuum fields. A summary of contemporary models of continuum dislocation dynamics is presented. These include, in order of complexity, the two-dimensional statistical theory of dislocations, the field dislocation mechanics treating the total Kröner–Nye tensor, vector density approaches that treat geometrically necessary dislocations on each slip system of a crystal, and high-order theories that examine the effect of dislocation curvature and distribution over orientation. Each of theories contain common themes, including statistical closure of the kinetic dislocation transport equations and treatment of dislocation reactions such as junction formation. An emphasis is placed on how these common themes rely on closure relations obtained by analysis of discrete dislocation dynamics experiments. The outlook of these various continuum theories of dislocation motion is then discussed.more » « less