skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104831

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Computational models of the cardiovascular system are increasingly used for the diagnosis, treatment, and prevention of cardiovascular disease. Before being used for translational applications, the predictive abilities of these models need to be thoroughly demonstrated through verification, validation, and uncertainty quantification. When results depend on multiple uncertain inputs, sensitivity analysis is typically the first step required to separate relevant from unimportant inputs, and is key to determine an initial reduction on the problem dimensionality that will significantly affect the cost of all downstream analysis tasks. For computationally expensive models with numerous uncertain inputs, sample‐based sensitivity analysis may become impractical due to the substantial number of model evaluations it typically necessitates. To overcome this limitation, we consider recently proposed Multifidelity Monte Carlo estimators for Sobol’ sensitivity indices, and demonstrate their applicability to an idealized model of the common carotid artery. Variance reduction is achieved combining a small number of three‐dimensional fluid–structure interaction simulations with affordable one‐ and zero‐dimensional reduced‐order models. These multifidelity Monte Carlo estimators are compared with traditional Monte Carlo and polynomial chaos expansion estimates. Specifically, we show consistent sensitivity ranks for both bi‐ (1D/0D) and tri‐fidelity (3D/1D/0D) estimators, and superior variance reduction compared to traditional single‐fidelity Monte Carlo estimators for the same computational budget. As the computational burden of Monte Carlo estimators for Sobol’ indices is significantly affected by the problem dimensionality, polynomial chaos expansion is found to have lower computational cost for idealized models with smooth stochastic response. 
    more » « less
  2. Free, publicly-accessible full text available November 1, 2026
  3. Free, publicly-accessible full text available June 13, 2026
  4. Free, publicly-accessible full text available June 10, 2026
  5. Free, publicly-accessible full text available May 17, 2026