skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2105161

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1D organic metal halide hybrids (OMHHs) exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promise for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Herein, 1D C4N2H14PbBr4by polarization‐dependent time‐averaged and time‐resolved photoluminescence (TRPL) spectroscopy, as a function of photoexcitation energy, is investigated. Surprisingly, it is found that the emission under photoexcitation polarized parallel to the 1D metal halide chains can be either stronger or weaker than that under perpendicular polarization, depending on the excitation energy. The excitation‐energy‐dependent anisotropic emission is attributed to fast surface recombination, supported by first‐principles calculations of optical absorption in this material. The fast surface recombination is directly confirmed by TRPL measurements, when the excitation is polarized parallel to the chains. The comprehensive studies provide a more complete picture for a deeper understanding of the optical anisotropy in 1D OMHHs. 
    more » « less