Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We show reflectivity cross sections for the San Gabriel, Chino, and San Bernardino basins north of Los Angeles (LA), California, determined from autocorrelations of ambient noise and teleseismic earthquake waves. These basins are thought to channel the seismic energy from earthquakes on the San Andreas fault to LA, and a more accurate model of their depth is important for hazard mitigation. We use the causal side of the autocorrelation function (ACF) to determine the zero-offset reflection response. To minimize the smoothing effect of the source time function, we remove the common mode from the autocorrelation to reveal the zero-offset reflection response. We apply this to 10 temporary nodal lines consisting of a total of 758 geophones with an intraline spacing of 250–300 m. We also show that the ACF from teleseismic events can provide illumination on the subsurface that is consistent with ambient noise. Both autocorrelation results compare favorably to receiver functions.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Abstract We construct a new shear velocity model for the San Gabriel, Chino and San Bernardino basins located in the northern Los Angeles area using ambient noise correlation between dense linear nodal arrays, broadband stations, and accelerometers. We observe Rayleigh and Love waves in the correlation of vertical (Z) and transverse (T) components, respectively. By combining Hilbert and Wavelet transforms, we obtain the separated fundamental and first higher mode of the Rayleigh wave dispersion curves based on their distinct particle motion polarization. Basin depths constrained by receiver functions, gravity, and borehole data are incorporated into the prior model. Our 3D shear wave velocity model covers the upper 3–5 km of the crust in the San Gabriel, Chino and San Bernardino basin area. The Vs model is in agreement with the geological and geophysical cross‐sections from other studies, but discrepancies exist between our model and a Southern California Earthquake Center community velocity model. Our shear wave velocity model shows good consistency with the CVMS 4.26 in the San Gabriel basin, but predicts a deeper and slower sedimentary basin in the San Bernardino and Chino basins than the community model.more » « less
-
Abstract The San Gabriel, Chino, and San Bernardino sedimentary basins in Southern California amplify earthquake ground motions and prolong the duration of shaking due to the basins' shape and low seismic velocities. In the event of a major earthquake rupture along the southern segment of the San Andreas fault, their connection and physical proximity to Los Angeles (LA) can produce a waveguide effect and amplify strong ground motions. Improved estimates of the shape and depth of the sediment‐basement interface are needed for more accurate ground‐shaking models. We obtain a three‐dimensional basement map of the basins by integrating gravity and seismic measurements. The travel time of the sediment‐basementP‐to‐Sconversion, and the Bouguer gravity along 10 seismic lines, are combined to produce a linear relationship that is used to extend the 2D profiles to a 3D basin map. Basement depth is calculated using the predicted travel time constrained by gravity with anS‐wave velocity model of the area. The model is further constrained by the basement depths from 17 boreholes. The basement map shows the south‐central part of the San Gabriel basin is the deepest part and a significant gravity signature is associated with our interpretation of the Raymond fault. The Chino basin deepens toward the south and shallows northeastward. The San Bernardino basin deepens eastward along the edge of the San Jacinto Fault Zone. In addition, we demonstrate the benefit of using gravity data to aid in the interpretation of the sediment‐basement interface in receiver functions.more » « less
-
Abstract Urban basin investigation is crucial for seismic hazard assessment and mitigation. Recent advances in robust nodal‐type sensors facilitate the deployment of large‐N arrays in urban areas for high‐resolution basin imaging. However, arrays typically operate for only one month due to the instruments' battery life, and hence, only record a few teleseismic events. This limits the number of available teleseismic events for traditional receiver function (RF) analysis‐the primary method used in sediment‐basement interface imaging in passive source seismology. Insufficient stacking of RFs from a limited number of earthquakes could, however, introduce significant biases to the results. In this study, we present a novel Bayesian array‐based Coherent Receiver Function (CRF) method that can leverage datasets from short‐term dense arrays to constrain basin geometry. We cast the RF deconvolution as a sparsity‐promoted inverse problem, in which the deconvolution at a single‐station involves the constraints from neighboring stations and multiple events. We solve the inverse problem using a trans‐dimensional Markov chain Monte Carlo Bayesian algorithm to find an ensemble of RF solutions, which provides a quantitative way of deciding which features are well resolved and warrant geological interpretation. An application in the northern Los Angeles basin demonstrates the ability of our method to produce reliable and easy‐to‐interpret RF images. The use of dense seismic networks and the state‐of‐the‐art Bayesian array‐based CRF method can provide a robust approach for subsurface structure imaging.more » « less
An official website of the United States government
