skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2105571

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To ensure privacy protection and alleviate computational burden, we propose a fast subsmaling procedure for the Cox model with massive survival datasets from multi-centered, decentralized sources. The proposed estimator is computed based on optimal subsampling probabilities that we derived and enables transmission of subsample-based summary level statistics between different storage sites with only one round of communication. For inference, the asymptotic properties of the proposed estimator were rigorously established. An extensive simulation study demonstrated that the proposed approach is effective. The methodology was applied to analyze a large dataset from the U.S. airlines. 
    more » « less
    Free, publicly-accessible full text available February 4, 2026
  2. Abstract To tackle massive data, subsampling is a practical approach to select the more informative data points. However, when responses are expensive to measure, developing efficient subsampling schemes is challenging, and an optimal sampling approach under measurement constraints was developed to meet this challenge. This method uses the inverses of optimal sampling probabilities to reweight the objective function, which assigns smaller weights to the more important data points. Thus, the estimation efficiency of the resulting estimator can be improved. In this paper, we propose an unweighted estimating procedure based on optimal subsamples to obtain a more efficient estimator. We obtain the unconditional asymptotic distribution of the estimator via martingale techniques without conditioning on the pilot estimate, which has been less investigated in the existing subsampling literature. Both asymptotic results and numerical results show that the unweighted estimator is more efficient in parameter estimation. 
    more » « less
  3. Free, publicly-accessible full text available April 1, 2026
  4. The evolving focus in statistics and data science education highlights the growing importance of computing. This paper presents the Data Jamboree, a live event that combines computational methods with traditional statistical techniques to address real-world data science problems. Participants, ranging from novices to experienced users, followed workshop leaders in using open-source tools like Julia, Python, and R to perform tasks such as data cleaning, manipulation, and predictive modeling. The Jamboree showcased the educational benefits of working with open data, providing participants with practical, hands-on experience. We compared the tools in terms of efficiency, flexibility, and statistical power, with Julia excelling in performance, Python in versatility, and R in statistical analysis and visualization. The paper concludes with recommendations for designing similar events to encourage collaborative learning and critical thinking in data science. 
    more » « less
  5. Subsampling is a practical strategy for analyzing vast survival data, which are progressively encountered across diverse research domains. While the optimal subsampling method has been applied to inferences for Cox models and parametric accelerated failure time (AFT) models, its application to semi‐parametric AFT models with rank‐based estimation have received limited attention. The challenges arise from the non‐smooth estimating function for regression coefficients and the seemingly zero contribution from censored observations in estimating functions in the commonly seen form. To address these challenges, we develop optimal subsampling probabilities for both event and censored observations by expressing the estimating functions through a well‐defined stochastic process. Meanwhile, we apply an induced smoothing procedure to the non‐smooth estimating functions. As the optimal subsampling probabilities depend on the unknown regression coefficients, we employ a two‐step procedure to obtain a feasible estimation method. An additional benefit of the method is its ability to resolve the issue of underestimation of the variance when the subsample size approaches the full sample size. We validate the performance of our estimators through a simulation study and apply the methods to analyze the survival time of lymphoma patients in the surveillance, epidemiology, and end results program. 
    more » « less