Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Privacy policies are crucial for informing users about data practices, yet their length and complexity often deter users from reading them. In this paper, we propose an automated approach to identify and visualize data practices within privacy policies at different levels of detail. Leveraging crowd-sourced annotations from the ToS;DR platform, we experiment with various methods to match policy excerpts with predefined data practice descriptions. We further conduct a case study to evaluate our approach on a real-world policy, demonstrating its effectiveness in simplifying complex policies. Experiments show that our approach accurately matches data practice descriptions with policy excerpts, facilitating the presentation of simplified privacy information to users.more » « less
-
The General Data Protection Regulation (GDPR) and other recent privacy laws require organizations to post their privacy policies, and place specific expectations on organisations' privacy practices. Privacy policies take the form of documents written in natural language, and one of the expectations placed upon them is that they remain up to date. To investigate legal compliance with this recency requirement at a large scale, we create a novel pipeline that includes crawling, regex-based extraction, candidate date classification and date object creation to extract updated and effective dates from privacy policies written in English. We then analyze patterns in policy dates using four web crawls and find that only about 40% of privacy policies online contain a date, thereby making it difficult to assess their regulatory compliance. We also find that updates in privacy policies are temporally concentrated around passage of laws regulating digital privacy (such as the GDPR), and that more popular domains are more likely to have policy dates as well as more likely to update their policies regularly.more » « less
-
Terms of service documents are a common feature of organizations' websites. Although there is no blanket requirement for organizations to provide these documents, their provision often serves essential legal purposes. Users of a website are expected to agree with the contents of a terms of service document, but users tend to ignore these documents as they are often lengthy and difficult to comprehend. As a step towards understanding the landscape of these documents at a large scale, we present a first-of-its-kind terms of service corpus containing 247,212 English language terms of service documents obtained from company websites sampled from Free Company Dataset. We examine the URLs and contents of the documents and find that some websites that purport to post terms of service actually do not provide them. We analyze reasons for unavailability and determine the overall availability of terms of service in a given set of website domains. We also identify that some websites provide an agreement that combines terms of service with a privacy policy, which is often an obligatory separate document. Using topic modeling, we analyze the themes in these combined documents by comparing them with themes found in separate terms of service and privacy policies. Results suggest that such single-page agreements miss some of the most prevalent topics available in typical privacy policies and terms of service documents and that many disproportionately cover privacy policy topics as compared to terms of service topics.more » « less
-
Organisations disclose their privacy practices by posting privacy policies on their websites. Even though internet users often care about their digital privacy, they usually do not read privacy policies, since understanding them requires a significant investment of time and effort. Natural language processing has been used to create experimental tools to interpret privacy policies, but there has been a lack of large privacy policy corpora to facilitate the creation of large-scale semi-supervised and unsupervised models to interpret and simplify privacy policies. Thus, we present the PrivaSeer Corpus of 1,005,380 English language website privacy policies collected from the web. The number of unique websites represented in PrivaSeer is about ten times larger than the next largest public collection of web privacy policies, and it surpasses the aggregate of unique websites represented in all other publicly available privacy policy corpora combined. We describe a corpus creation pipeline with stages that include a web crawler, language detection, document classification, duplicate and near-duplicate removal, and content extraction. We employ an unsupervised topic modelling approach to investigate the contents of policy documents in the corpus and discuss the distribution of topics in privacy policies at web scale. We further investigate the relationship between privacy policy domain PageRanks and text features of the privacy policies. Finally, we use the corpus to pretrain PrivBERT, a transformer-based privacy policy language model, and obtain state of the art results on the data practice classification and question answering tasks.more » « less
An official website of the United States government
