Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The terrestrial carbon cycle varies dynamically on hourly to weekly scales, making it difficult to observe. Geostationary (“weather”) satellites like the Geostationary Environmental Operational Satellite - R Series (GOES-R) deliver near-hemispheric imagery at a ten-minute cadence. The Advanced Baseline Imager (ABI) aboard GOES-R measures visible and near-infrared spectral bands that can be used to estimate land surface properties and carbon dioxide flux. However, GOES-R data are designed for real-time dissemination and are difficult to link with eddy covariance time series of land-atmosphere carbon dioxide exchange. We compiled three-year time series of GOES-R land surface attributes including visible and near-infrared reflectances, land surface temperature (LST), and downwelling shortwave radiation (DSR) at 314 ABI fixed grid pixels containing eddy covariance towers. We demonstrate how to best combine satellite andin-situdatasets and show how ABI attributes useful for ecosystem monitoring vary across space and time. By connecting observation networks that infer rapid changes to the carbon cycle, we can gain a richer understanding of the processes that control it.more » « less
-
This study investigates high-frequency mapping of downward shortwave radiation (DSR) at the Earth’s surface using the advanced baseline imager (ABI) instrument mounted on Geo- stationary Operational Environmental Satellite—R Series (GOES- R). The existing GOES-R DSR product (DSRABI) offers hourly temporal resolution and spatial resolution of 0.25°. To enhance these resolutions, we explore machine learning (ML) for DSR estimation at the native temporal resolution of GOES-R Level-2 cloud and moisture imagery product (5 min) and its native spatial resolution of 2 km at nadir. We compared four common ML regres- sion models through the leave-one-out cross-validation algorithm for robust model assessment against ground measurements from AmeriFlux and SURFRAD networks. Results show that gradient boosting regression (GBR) achieves the best performance (R2 = 0.916, RMSE = 88.05 W·m−2) with more efficient computation compared to long short-term memory, which exhibited similar performance. DSR estimates from the GBR model through the ABI live imaging of vegetated ecosystems workflow (DSRALIVE) outperform DSRABI across various temporal resolutions and sky conditions. DSRALIVE agreement with ground measurements at SURFRAD networks exhibits high accuracy at high temporal res- olutions (5-min intervals) with R2 exceeding 0.85 and RMSE = 122 W·m−2 . We conclude that GBR offers a promising approach for high-frequency DSR mapping from GOES-R, enabling improved applications for near-real-time monitoring of terrestrial carbon and water fluxes.more » « less
An official website of the United States government
