skip to main content


Title: GOES-R land surface products at Western Hemisphere eddy covariance tower locations
Abstract

The terrestrial carbon cycle varies dynamically on hourly to weekly scales, making it difficult to observe. Geostationary (“weather”) satellites like the Geostationary Environmental Operational Satellite - R Series (GOES-R) deliver near-hemispheric imagery at a ten-minute cadence. The Advanced Baseline Imager (ABI) aboard GOES-R measures visible and near-infrared spectral bands that can be used to estimate land surface properties and carbon dioxide flux. However, GOES-R data are designed for real-time dissemination and are difficult to link with eddy covariance time series of land-atmosphere carbon dioxide exchange. We compiled three-year time series of GOES-R land surface attributes including visible and near-infrared reflectances, land surface temperature (LST), and downwelling shortwave radiation (DSR) at 314 ABI fixed grid pixels containing eddy covariance towers. We demonstrate how to best combine satellite andin-situdatasets and show how ABI attributes useful for ecosystem monitoring vary across space and time. By connecting observation networks that infer rapid changes to the carbon cycle, we can gain a richer understanding of the processes that control it.

 
more » « less
NSF-PAR ID:
10494546
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
11
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Among all the natural hazards throughout the world, floods occur most frequently. They occur in high latitude regions, such as: 82% of the area of North America; most of Russia; Norway, Finland, and Sweden in North Europe; China and Japan in Asia. River flooding due to ice jams may happen during the spring breakup season. The Northeast and North Central region, and some areas of the western United States, are especially harmed by floods due to ice jams and snowmelt. In this study, observations from operational satellites are used to map and monitor floods due to ice jams and snowmelt. For a coarse-to-moderate resolution sensor on board the operational satellites, like the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Polar-orbiting Partnership (NPP) and the Joint Polar Satellite System (JPSS) series, and the Advanced Baseline Imager (ABI) on board the GOES-R series, a pixel is usually composed of a mix of water and land. Water fraction can provide more information and can be estimated through mixed-pixel decomposition. The flood map can be derived from the water fraction difference after and before flooding. In high latitude areas, while conventional observations are usually sparse, multiple observations can be available from polar-orbiting satellites during a single day, and river forecasters can observe ice movement, snowmelt status and flood water evolution from satellite-based flood maps, which is very helpful in ice jam determination and flood prediction. The high temporal resolution of geostationary satellite imagery, like that of the ABI, can provide the greatest extent of flood signals, and multi-day composite flood products from higher spatial resolution imagery, such as VIIRS, can pinpoint areas of interest to uncover more details. One unique feature of our JPSS and GOES-R flood products is that they include not only normal flood type, but also a special flood type as the supra-snow/ice flood, and moreover, snow and ice masks. Following the demonstrations in this study, it is expected that the JPSS and GOES-R flood products, with ice and snow information, can allow dynamic monitoring and prediction of floods due to ice jams and snowmelt for wide-end users. 
    more » « less
  2. The use of multispectral geostationary satellites to study aquatic ecosystems improves the temporal frequency of observations and mitigates cloud obstruction, but no operational capability presently exists for the coastal and inland waters of the United States. The Advanced Baseline Imager (ABI) on the current iteration of the Geostationary Operational Environmental Satellites, termed theRSeries (GOES-R), however, provides sub-hourly imagery and the opportunity to overcome this deficit and to leverage a large repository of existing GOES-R aquatic observations. The fulfillment of this opportunity is assessed herein using a spectrally simplified, two-channel aquatic algorithm consistent with ABI wave bands to estimate the diffuse attenuation coefficient for photosynthetically available radiation,Kd(PAR). First, anin situABI dataset was synthesized using a globally representative dataset of above- and in-water radiometric data products. Values ofKd(PAR)were estimated by fitting the ratio of the shortest and longest visible wave bands from thein situABI dataset to coincident,in situKd(PAR)data products. The algorithm was evaluated based on an iterative cross-validation analysis in which 80% of the dataset was randomly partitioned for fitting and the remaining 20% was used for validation. The iteration producing the median coefficient of determination (R2) value (0.88) resulted in a root mean square difference of0.319m−<#comment/>1, or 8.5% of the range in the validation dataset. Second, coincident mid-day images of central and southern California from ABI and from the Moderate Resolution Imaging Spectroradiometer (MODIS) were compared using Google Earth Engine (GEE). GEE default ABI reflectance values were adjusted based on a near infrared signal. Matchups between the ABI and MODIS imagery indicated similar spatial variability (R2=0.60) between ABI adjusted blue-to-red reflectance ratio values and MODIS default diffuse attenuation coefficient for spectral downward irradiance at 490 nm,Kd(490), values. This work demonstrates that if an operational capability to provide ABI aquatic data products was realized, the spectral configuration of ABI would potentially support a sub-hourly, visible aquatic data product that is applicable to water-mass tracing and physical oceanography research.

     
    more » « less
  3. null (Ed.)
    Abstract. Environmental science is increasingly reliant on remotely sensedobservations of the Earth's surface and atmosphere. Observations frompolar-orbiting satellites have long supported investigations on land coverchange, ecosystem productivity, hydrology, climate, the impacts ofdisturbance, and more and are critical for extrapolating (upscaling)ground-based measurements to larger areas. However, the limited temporalfrequency at which polar-orbiting satellites observe the Earth limits ourunderstanding of rapidly evolving ecosystem processes, especially in areaswith frequent cloud cover. Geostationary satellites have observed theEarth's surface and atmosphere at high temporal frequency for decades, andtheir imagers now have spectral resolutions in the visible and near-infrared regions that are comparable to commonly used polar-orbiting sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), or Landsat. These advances extend applications of geostationary Earth observations from weather monitoring to multiple disciplines in ecology and environmental science. We review a number of existing applications that use data from geostationary platforms and present upcoming opportunities for observing key ecosystem properties using high-frequency observations from the Advanced Baseline Imagers (ABI) on the Geostationary Operational Environmental Satellites (GOES), which routinely observe the Western Hemisphere every 5–15 min. Many of the existing applications in environmental science from ABI are focused on estimating land surface temperature, solar radiation, evapotranspiration, and biomass burning emissions along with detecting rapid drought development and wildfire. Ongoing work in estimating vegetation properties and phenology from other geostationary platforms demonstrates the potential to expand ABI observations to estimate vegetation greenness, moisture, and productivity at a high temporal frequency across the Western Hemisphere. Finally, we present emerging opportunities to address the relatively coarseresolution of ABI observations through multisensor fusion to resolvelandscape heterogeneity and to leverage observations from ABI to study thecarbon cycle and ecosystem function at unprecedented temporal frequency. 
    more » « less
  4. Abstract

    Terrestrial photosynthesis is the largest and one of the most uncertain fluxes in the global carbon cycle. We find that near‐infrared reflectance of vegetation (NIRV), a remotely sensed measure of canopy structure, accurately predicts photosynthesis at FLUXNET validation sites at monthly to annual timescales (R2 = 0.68), without the need for difficult to acquire information about environmental factors that constrain photosynthesis at short timescales. Scaling the relationship between gross primary production (GPP) and NIRVfrom FLUXNET eddy covariance sites, we estimate global annual terrestrial photosynthesis to be 147 Pg C/year (95% credible interval 131–163 Pg C/year), which falls between bottom‐up GPP estimates and the top‐down global constraint on GPP from oxygen isotopes. NIRV‐derived estimates of GPP are systematically higher than existing bottom‐up estimates, especially throughout the midlatitudes. Progress in improving estimated GPP from NIRVcan come from improved cloud screening in satellite data and increased resolution of vegetation characteristics, especially details about plant photosynthetic pathway.

     
    more » « less
  5. Abstract

    Surface‐atmosphere fluxes and their drivers vary across space and time. A growing area of interest is in downscaling, localizing, and/or resolving sub‐grid scale energy, water, and carbon fluxes and drivers. Existing downscaling methods require inputs of land surface properties at relatively high spatial (e.g., sub‐kilometer) and temporal (e.g., hourly) resolutions, but many observed land surface drivers are not continuously available at these resolutions. We evaluate an approach to overcome this challenge for land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key driver for surface heat fluxes. The Chequamegon Heterogenous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. We downscaled LST from satellites (GOES‐16 and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station [ECOSTRESS]) with further refinement using airborne hyperspectral imagery. Temporally and spatially downscaled LST compared well to independent observations from a network of 20 micrometeorological towers and piloted aircrafts in addition to Landsat‐based LST retrieval and drone‐based LST observed at one tower site. The downscaled 50‐m hourly LST showed good relationships with tower (r2 = 0.79, RMSE = 3.5 K) and airborne (r2 = 0.75, RMSE = 2.4 K) observations over space and time, with precision lower over wetlands and lakes, and some improvement for capturing spatio‐temporal variation compared to a geostationary satellite. Further downscaling to 10 m using hyperspectral imagery resolved hot and cold spots across the landscape as evidenced by independent drone LST, with significant reduction in RMSE by 1.3 K. These results demonstrate a simple pathway for multi‐sensor retrieval of high space and time resolution LST.

     
    more » « less