Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Accurately estimating stream discharge is crucial for many ecological, biogeochemical, and hydrologic analyses. As of September 2022, The National Ecological Observatory Network (NEON) provided up to 5 years of continuous discharge estimates at 28 streams across the United States. NEON created rating curves at each site in a Bayesian framework, parameterized using hydraulic controls and manual measurements of discharge. Here we evaluate the reliability of these discharge estimates with three approaches. We (1) compared predicted to observed discharge, (2) compared predicted to observed stage, and (3) calculated the proportion of discharge estimates extrapolated beyond field measurements. We considered 1,523 site-months of continuous streamflow predictions published by NEON. Of these, 39% met our highest quality criteria, 11% fell into an intermediate classification, and 50% of site-months were classified as unreliable. We provided diagnostic metrics and categorical evaluations of continuous discharge and stage estimates by month for each site, enabling users to rapidly query for suitable NEON data.more » « less
-
Abstract Streams and rivers are major sources of greenhouse gases (GHGs) to the atmosphere, as carbon and nitrogen are converted and outgassed during transport. Although our understanding of drivers of individual GHG fluxes has improved with numerous site‐specific studies and global‐scale compilations, our ability to parse out interrelated physical and biogeochemical drivers of gas concentrations is limited by a lack of consistently collected, temporally continuous samples of GHGs and their associated drivers. We present a first analysis of such a dataset collected by the National Ecological Observatory Network across 27 streams and rivers across ecoclimatic domains of the United States. Average concentrations of CO2ranged from 36.9 ± 0.88 to 404 ± 33 μmol L−1, CH4from 0.003 ± 0.0003 to 4.99 ± 0.72 μmol L−1, and N2O from 0.015 to 0.04 μmol L−1and spanned ranges of previous global compilations. Both CO2and CH4were strongly affected by physical drivers including mean air temperature and stream slope, as well as by dissolved oxygen and total nitrogen concentrations. N2O was exclusively correlated with total nitrogen concentrations. Results suggested that potential for gas exchange dominated patterns in gas concentrations at the site level, but contributions of in‐stream aerobic and anaerobic metabolism, and groundwater also likely varied across sites. The highest gas concentrations as well as highest variability occurred in low‐gradient, warmer, and nonperennial systems. These results are a first step in providing unprecedented, continuous estimates of GHG flux constrained by temporally variable physical and biogeochemical drivers of GHG production.more » « less
-
Abstract. Quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Some continuous discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and early-operational phases (2015–present) are marked by anomalies related to sensor drift, gauge movement, and incomplete rating curves. Here, we investigate the potential to estimate continuous discharge when discrete streamflow measurements are available at the site of interest. Using field-measured discharge as truth, we reconstructed continuous discharge for all 27 NEON stream gauges via linear regression on nearby donor gauges and/or prediction from neural networks trained on a large corpus of established gauge data. Reconstructions achieved median efficiencies of 0.83 (Nash–Sutcliffe, or NSE) and 0.81 (Kling–Gupta, or KGE) across all sites and improved KGE at 11 sites versus published data, with linear regression generally outperforming deep learning approaches due to the use of target site data for model fitting rather than evaluation only. Estimates from this analysis inform ∼199 site-months of missing data in the official record, and can be used jointly with NEON data to enhance the descriptive and predictive value of NEON's stream data products. We provide 5 min composite discharge series for each site that combine the best estimates across modeling approaches and NEON's published data. The success of this effort demonstrates the potential to establish “virtual gauges”, sites at which continuous streamflow can be accurately estimated from discrete measurements, by transferring information from nearby donor gauges and/or large collections of training data.more » « less
-
Abstract. Streamflow, or discharge, is an essential measure in the study of rivers and streams. However, quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Here, we investigate the potential for both simple and complex models to accurately estimate continuous discharge (at least daily estimates), using only discrete manual measurements of streamflow. We were inspired to do this work because some continuous discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and early-operational phases (2015–present) are marked by anomalous data due to sensor drift, gauge movement, and incomplete rating curves. Using field-measured discharge as truth, we reconstructed continuous discharge for all 27 NEON stream gauges over this period via linear regression on nearby donor gauges and/or prediction from neural networks trained on a large corpus of established gauge data. Top reconstructions achieved median efficiencies of 0.83 (Nash-Sutcliffe, or NSE) and 0.81 (Kling-Gupta, or KGE) across all sites, and improved KGE at 11 sites versus published data. Estimates from this analysis inform ~199 site-months of missing data in the official record, and can be used jointly with NEON data to enhance the descriptive and predictive value of NEON’s stream data products. We provide 5-minute composite discharge series for each site that combine the best estimates across modeling approaches and NEON’s published data.more » « less
An official website of the United States government
