skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106152

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the roles ofsearch gainandcostin users' search decision‐making is a key topic in interactive information retrieval (IIR). While previous research has developed user models based onsimulatedgains and costs, it is unclear how users' actualperceptions of search gains and costsform and change during search interactions. To address this gap, our study adopted expectation‐confirmation theory (ECT) to investigate users' perceptions of gains and costs. We re‐analyzed data from our previous study, examining how contextual and search features affect users' perceptions and how their expectation‐confirmation states impact their following searches. Our findings include: (1) The point where users' actual dwell time meets their constant expectation may serve as a reference point in evaluating perceived gain and cost; (2) these perceptions are associated with in situ experience represented by usefulness labels, browsing behaviors, and queries; (3) users' current confirmation states affect their perceptions of Web page usefulness in the subsequent query. Our findings demonstrate possible effects of expectation‐confirmation, prospect theory, and information foraging theory, highlighting the complex relationships among gain/cost, expectations, and dwell time at the query level, and the reference‐dependent expectation at the session level. These insights enrich user modeling and evaluation in human‐centered IR. 
    more » « less
  2. Abstract Evaluation metrics such as precision, recall and normalized discounted cumulative gain have been widely applied inad hocretrieval experiments. They have facilitated the assessment of system performance in various topics over the past decade. However, the effectiveness of such metrics in capturing users’ in-situ search experience, especially in complex search tasks that trigger interactive search sessions, is limited. To address this challenge, it is necessary to adaptively adjust the evaluation strategies of search systems to better respond to users’ changing information needs and evaluation criteria. In this work, we adopt a taxonomy of search task states that a user goes through in different scenarios and moments of search sessions, and perform a meta-evaluation of existing metrics to better understand their effectiveness in measuring user satisfaction. We then built models for predicting task states behind queries based on in-session signals. Furthermore, we constructed and meta-evaluated new state-aware evaluation metrics. Our analysis and experimental evaluation are performed on two datasets collected from a field study and a laboratory study, respectively. Results demonstrate that the effectiveness of individual evaluation metrics varies across task states. Meanwhile, task states can be detected from in-session signals. Our new state-aware evaluation metrics could better reflect in-situ user satisfaction than an extensive list of the widely used measures we analyzed in this work in certain states. Findings of our research can inspire the design and meta-evaluation of user-centered adaptive evaluation metrics, and also shed light on the development of state-aware interactive search systems. 
    more » « less
  3. ABSTRACT User search performance is multidimensional in nature and may be better characterized by metrics that depict users' interactions with both relevant and irrelevant results. Despite previous research on one‐dimensional measures, it is still unclear how to characterize different dimensions of user performance and leverage the knowledge in developing proactive recommendations. To address this gap, we propose and empirically test a framework of search performance evaluation and build early performance prediction models to simulate proactive search path recommendations. Experimental results from four datasets of diverse types (1,482 sessions and 5,140 query segments from both controlled lab and natural settings) demonstrate that: 1) Cluster patterns characterized by cost‐gain‐based multifaceted metrics can effectively differentiate high‐performing users from other searchers, which form the empirical basis for proactive recommendations; 2) whole‐session performance can be reliably predicted at early stages of sessions (e.g., first and second queries); 3) recommendations built upon the search paths of system‐identified high‐performing searchers can significantly improve the search performance of struggling users. Experimental results demonstrate the potential of our approach for leveraging collective wisdom from automatically identified high‐performance user groups in developing and evaluating proactive in‐situ search recommendations. 
    more » « less
  4. When interacting with information retrieval (IR) systems, users, affected by confirmation biases, tend to select search results that confirm their existing beliefs on socially significant contentious issues. To understand the judgments and attitude changes of users searching online, our study examined how cognitively biased users interact with algorithmically biased search engine result pages (SERPs). We designed three-query search sessions on debated topics under various bias conditions. We recruited 1,321 crowdsourcing participants and explored their attitude changes, search interactions, and the effects of confirmation bias. Three key findings emerged: 1) most attitude changes occur in the initial query of a search session; 2) Confirmation bias and result presentation on SERPs affect the number and depth of clicks in the current query and perceived familiarity with clicked results in subsequent queries; 3) The bias position also affects attitude changes of users with lower perceived openness to conflicting opinions. Our study goes beyond traditional simulation-based evaluation settings and simulated rational users, sheds light on the mixed effects of human biases and algorithmic biases in information retrieval tasks on debated topics, and can inform the design of bias-aware user models, human-centered bias mitigation techniques, and socially responsible intelligent IR systems. 
    more » « less
  5. Understanding how people interact with search interfaces is core to the field of Interactive Information Retrieval (IIR). While various models have been proposed (e.g., Belkin's ASK, Berry picking, Everyday-life information seeking, Information foraging theory, Economic theory, etc.), they have largely ignored the impact of cognitive biases on search behaviour and performance. A growing body of empirical work exploring how people's cognitive biases influence search and judgments, has led to the development of new models of search that draw upon Behavioural Economics and Psychology. This full day tutorial will provide a starting point for researchers seeking to learn more about information seeking, search and retrieval under uncertainty. The tutorial will be structured into three parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [60] (1974) which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search,[5, 40] before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial). The third part will focus on a discussion of the practical implication regarding the design and evaluation human-centered IR systems in the light of cognitive biases - where participants will undertake some hands-on exercises. 
    more » « less
  6. Large language model (LLM) applications, such as ChatGPT, are a powerful tool for online information-seeking (IS) and problem-solving tasks. However, users still face challenges initializing and refining prompts, and their cognitive barriers and biased perceptions further impede task completion. These issues reflect broader challenges identified within the fields of IS and interactive information retrieval (IIR). To address these, our approach integrates task context and user perceptions into human-ChatGPT interactions through prompt engineering. We developed a ChatGPT-like platform integrated with supportive functions, including perception articulation, prompt suggestion, and conversation explanation. Our findings of a user study demonstrate that the supportive functions help users manage expectations, reduce cognitive loads, better refine prompts, and increase user engagement. This research enhances our comprehension of designing proactive and user-centric systems with LLMs. It offers insights into evaluating human-LLM interactions and emphasizes potential challenges for under served users. 
    more » « less
  7. Modeling how people interact with search interfaces is core to the field of Interactive Information Retrieval. While various models have been proposed ranging from conceptual (e.g., Belkin’s ASK[12], Berry picking[11], Everyday-life information seeking, etc.) to theoretical (e.g., Information foraging theory[50], Economic theory[4], etc.), more recently there has been a body of working explore how people’s biases and the heuristics that they take influence how they search. This has led to the development of new models of the search process drawing upon Behavioural Economics and Psychology. This half day tutorial will provide a starting point for researchers seeking to learn more about information searching under uncertainty. The tutorial will be structured into two parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [59] which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search [6, 42], before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial etc.). The tutorial will wrap up with a discussion of some of the practical implication for how we can better design and evaluate IR systems in the light of cognitive biases. 
    more » « less
  8. Previous researches demonstrate that users’ actions in search interaction are associated with relative gains and losses to reference points, known as the reference dependence effect. However, this widely confirmed effect is not represented in most user models underpinning existing search evaluation metrics. In this study, we propose a new evaluation metric framework, namely Reference Dependent Metric (ReDeM), for assessing query-level search by incorporating the effect of reference dependence into the modelling of user search behavior. To test the overall effectiveness of the proposed framework, (1) we evaluate the performance, in terms of correlation with user satisfaction, of ReDeMs built upon different reference points against that of the widely-used metrics on three search datasets; (2) we examine the performance of ReDeMs under different task states, like task difficulty and task urgency; and (3) we analyze the statistical reliability of ReDeMs in terms of discriminative power. Experimental results indicate that: (1) ReDeMs integrated with a proper reference point achieve better correlations with user satisfaction than most of the existing metrics, like Discounted Cumulative Gain (DCG) and Rank-Biased Precision (RBP), even though their parameters have already been well-tuned; (2) ReDeMs reach relatively better performance compared to existing metrics when the task triggers a high-level cognitive load; (3) the discriminative power of ReDeMs is far stronger than Expected Reciprocal Rank (ERR), slightly stronger than Precision and similar to DCG, RBP and INST. To our knowledge, this study is the first to explicitly incorporate the reference dependence effect into the user browsing model and offline evaluation metrics. Our work illustrates a promising approach to leveraging the insights about user biases from cognitive psychology in better evaluating user search experience and enhancing user models. 
    more » « less
  9. As artificial intelligence (AI) assisted search and recommender systems have become ubiquitous in workplaces and everyday lives, understanding and accounting for fairness has gained increasing attention in the design and evaluation of such systems. While there is a growing body of computing research on measuring system fairness and biases associated with data and algorithms, the impact of human biases that go beyond traditional machine learning (ML) pipelines still remain understudied. In this Perspective Paper, we seek to develop a two-sided fairness framework that not only characterizes data and algorithmic biases, but also highlights the cognitive and perceptual biases that may exacerbate system biases and lead to unfair decisions. Within the framework, we also analyze the interactions between human and system biases in search and recommendation episodes. Built upon the two-sided framework, our research synthesizes intervention and intelligent nudging strategies applied in cognitive and algorithmic debiasing, and also proposes novel goals and measures for evaluating the performance of systems in addressing and proactively mitigating the risks associated with biases in data, algorithms, and bounded rationality. This paper uniquely integrates the insights regarding human biases and system biases into a cohesive framework and extends the concept of fairness from human-centered perspective. The extended fairness framework better reflects the challenges and opportunities in users’ interactions with search and recommender systems of varying modalities. Adopting the two-sided approach in information system design has the potential to enhancing both the effectiveness in online debiasing and the usefulness to boundedly rational users engaging in information-intensive decision-making. 
    more » « less