Modeling how people interact with search interfaces is core to the field of Interactive Information Retrieval. While various models have been proposed ranging from conceptual (e.g., Belkin’s ASK[12], Berry picking[11], Everyday-life information seeking, etc.) to theoretical (e.g., Information foraging theory[50], Economic theory[4], etc.), more recently there has been a body of working explore how people’s biases and the heuristics that they take influence how they search. This has led to the development of new models of the search process drawing upon Behavioural Economics and Psychology. This half day tutorial will provide a starting point for researchers seeking to learn more about information searching under uncertainty. The tutorial will be structured into two parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [59] which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search [6, 42], before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial etc.). The tutorial will wrap up with a discussion of some of the practical implication for how we can better design and evaluate IR systems in the light of cognitive biases.
more »
« less
Search under Uncertainty: Cognitive Biases and Heuristics: A Tutorial on Testing, Mitigating and Accounting for Cognitive Biases in Search Experiments
Understanding how people interact with search interfaces is core to the field of Interactive Information Retrieval (IIR). While various models have been proposed (e.g., Belkin's ASK, Berry picking, Everyday-life information seeking, Information foraging theory, Economic theory, etc.), they have largely ignored the impact of cognitive biases on search behaviour and performance. A growing body of empirical work exploring how people's cognitive biases influence search and judgments, has led to the development of new models of search that draw upon Behavioural Economics and Psychology. This full day tutorial will provide a starting point for researchers seeking to learn more about information seeking, search and retrieval under uncertainty. The tutorial will be structured into three parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [60] (1974) which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search,[5, 40] before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial). The third part will focus on a discussion of the practical implication regarding the design and evaluation human-centered IR systems in the light of cognitive biases - where participants will undertake some hands-on exercises.
more »
« less
- Award ID(s):
- 2106152
- PAR ID:
- 10543489
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400704314
- Page Range / eLocation ID:
- 3013 to 3016
- Format(s):
- Medium: X
- Location:
- Washington DC USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cognitive biases are hardwired behaviors that influence developer actions and can set them on an incorrect course of action, necessitating backtracking. Although researchers have found that cognitive biases occur in development tasks in controlled lab studies, we still do not know how these biases affect developers' everyday behavior. Without such an understanding, development tools and practices remain inadequate. To close this gap, we conducted a two-part field study to examine the extent to which cognitive biases occur, the consequences of these biases on developer behavior, and the practices and tools that developers use to deal with these biases. We found about 70% of observed actions were associated with at least one cognitive bias. Even though developers recognized that biases frequently occur, they are forced to deal with such issues with ad hoc processes and suboptimal tool support. As one participant (IP12) lamented: There is no salvation!more » « less
-
null (Ed.)Cognitive biases are hard-wired behaviors that influence developer actions and can set them on an incorrect course of action, necessitating backtracking. While researchers have found that cognitive biases occur in development tasks in controlled lab studies, we still don't know how these biases affect developers' everyday behavior. Without such an understanding, development tools and practices remain inadequate. To close this gap, we conducted a 2-part field study to examine the extent to which cognitive biases occur, the consequences of these biases on developer behavior, and the practices and tools that developers use to deal with these biases. About 70% of observed actions that were reversed were associated with at least one cognitive bias. Further, even though developers recognized that biases frequently occur, they routinely are forced to deal with such issues with ad hoc processes and sub-optimal tool support. As one participant (IP12) lamented: There is no salvation!more » « less
-
Large language models generate complex, open-ended outputs: instead of outputting a class label they write summaries, generate dialogue, or produce working code. In order to asses the reliability of these open-ended generation systems, we aim to identify qualitative categories of erroneous behavior, beyond identifying individual errors. To hypothesize and test for such qualitative errors, we draw inspiration from human cognitive biases -- systematic patterns of deviation from rational judgement. Specifically, we use cognitive biases as motivation to (i) generate hypotheses for problems that models may have, and (ii) develop experiments that elicit these problems. Using code generation as a case study, we find that OpenAI's Codex errs predictably based on how the input prompt is framed, adjusts outputs towards anchors, and is biased towards outputs that mimic frequent training examples. We then use our framework to elicit high-impact errors such as incorrectly deleting files. Our results indicate that experimental methodology from cognitive science can help characterize how machine learning systems behave.more » « less
-
Social navigation—such as anticipating where gossip may spread, or identifying which acquaintances can help land a job—relies on knowing how people are connected within their larger social communities. Problematically, for most social networks, the space of possible relationships is too vast to observe and memorize. Indeed, people's knowledge of these social relations is well known to be biased and error-prone. Here, we reveal that these biased representations reflect a fundamental computation that abstracts over individual relationships to enable principled inferences about unseen relationships. We propose a theory of network representation that explains how people learn inferential cognitive maps of social relations from direct observation, what kinds of knowledge structures emerge as a consequence, and why it can be beneficial to encode systematic biases into social cognitive maps. Leveraging simulations, laboratory experiments, and “field data” from a real-world network, we find that people abstract observations of direct relations (e.g., friends) into inferences of multistep relations (e.g., friends-of-friends). This multistep abstraction mechanism enables people to discover and represent complex social network structure, affording adaptive inferences across a variety of contexts, including friendship, trust, and advice-giving. Moreover, this multistep abstraction mechanism unifies a variety of otherwise puzzling empirical observations about social behavior. Our proposal generalizes the theory of cognitive maps to the fundamental computational problem of social inference, presenting a powerful framework for understanding the workings of a predictive mind operating within a complex social world.more » « less
An official website of the United States government

