skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2106402

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. At times, the interfaces of videogames – gameworlds – contain tiny details that go unnoticed. One such detail is how designers employ ! and ? to communicate to players. These punctuation marks have existed in videogames since their creation, yet remain undiscussed by designers. They are used as ways to promote curiosity, as objects, as ways to symbolize excitement, and as a prompt to react. Their varied history is deserving of attention, so we present a chronicle of two pieces of gameworld punctuation: ! and ?. We discuss current and past uses and identify more ways that these could be used in the future. These symbols may present a useful space of inquiry not only for games and games research, but more generally, in terms of the rapid communication of complex information. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Search and rescue (SAR) teams are the first to respond to emergencies. This could include finding lost hikers, shoring buildings, or aiding people post-disaster. SAR combines orienteering, engineering, field medicine, and communication. Technology use in SAR has been changing with the proliferation of information communication technologies; so, we ask, how are established and emerging technologies used in SAR? Understanding how responders are adopting and adapting these technologies during SAR missions can inform future design and improve outcomes for SAR teams. We interviewed SAR volunteers to contextualize their experiences with technology and triangulated with additional questionnaire data. We discuss how technology use in SAR requires an intersection of expert knowledge and creative problem solving to overcome challenges in the field. 
    more » « less
    Free, publicly-accessible full text available May 21, 2024
  3. Emergency Management (EM) is experiencing a crisis of technology as technologists have attempted to innovate standard operating procedures with minimal input from EM. Unsurprisingly, there has yet to be a success. Instead, technologists have focused on consumer culture and fostered a slow-moving crisis as the gap between what consumers and EM can do is deep. At present, the most ubiquitous aspect of technology in disaster is its capacity to exacerbate response, create new kinds of disaster, and create consumer expectations that EM cannot meet. In the present work, we highlight how and why technological production needs to shift its ontological premises dramatically to meet the needs of technology for first responders. From supporting practice to taking a few steps back from the bleeding edge, we offer a range of suggestions based on the technological capacities of emergency management in the present and in the future. 
    more » « less
    Free, publicly-accessible full text available May 21, 2024
  4. As artificial agents proliferate, there will be more and more situations in which they must communicate their capabilities to humans, including what they can “see.” Artificial agents have existed for decades in the form of computer-controlled agents in videogames. We analyze videogames in order to not only inspire the design of better agents, but to stop agent designers from replicating research that has already been theorized, designed, and tested in-depth. We present a qualitative thematic analysis of sight cues in videogames and develop a framework to support human-agent interaction design. The framework identifies the different locations and stimulus types – both visualizations and sonifications – available to designers and the types of information they can convey as sight cues. Insights from several other cue properties are also presented. We close with suggestions for implementing such cues with existing technologies to improve the safety, privacy, and efficiency of human-agent interactions. 
    more » « less