skip to main content


Title: “I See You!”: A Design Framework for Interface Cues about Agent Visual Perception from a Thematic Analysis of Videogames
As artificial agents proliferate, there will be more and more situations in which they must communicate their capabilities to humans, including what they can “see.” Artificial agents have existed for decades in the form of computer-controlled agents in videogames. We analyze videogames in order to not only inspire the design of better agents, but to stop agent designers from replicating research that has already been theorized, designed, and tested in-depth. We present a qualitative thematic analysis of sight cues in videogames and develop a framework to support human-agent interaction design. The framework identifies the different locations and stimulus types – both visualizations and sonifications – available to designers and the types of information they can convey as sight cues. Insights from several other cue properties are also presented. We close with suggestions for implementing such cues with existing technologies to improve the safety, privacy, and efficiency of human-agent interactions.  more » « less
Award ID(s):
2106402 2105069
NSF-PAR ID:
10329132
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
CHI '22: CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Across a wide variety of domains, artificial agents that can adapt and personalize to users have potential to improve and transform how social services are provided. Because of the need for personalized interaction data to drive this process, long-term (or longitudinal) interactions between users and agents, which unfold over a series of distinct interaction sessions, have attracted substantial research interest. In recognition of the expanded scope and structure of a long-term interaction, researchers are also adjusting the personalization models and algorithms used, orienting toward “continual learning” methods, which do not assume a stationary modeling target and explicitly account for the temporal context of training data. In parallel, researchers have also studied the effect of “multitask personalization,” an approach in which an agent interacts with users over multiple different tasks contexts throughout the course of a long-term interaction and learns personalized models of a user that are transferrable across these tasks. In this paper, we unite these two paradigms under the framework of “Lifelong Personalization,” analyzing the effect of multitask personalization applied to dynamic, non-stationary targets. We extend the multi-task personalization approach to the more complex and realistic scenario of modeling dynamic learners over time, focusing in particular on interactive scenarios in which the modeling agent plays an active role in teaching the student whose knowledge the agent is simultaneously attempting to model. Inspired by the way in which agents use active learning to select new training data based on domain context, we augment a Gaussian Process-based multitask personalization model with a mechanism to actively and continually manage its own training data, allowing a modeling agent to remove or reduce the weight of observed data from its training set, based on interactive context cues. We evaluate this method in a series of simulation experiments comparing different approaches to continual and multitask learning on simulated student data. We expect this method to substantially improve learning in Gaussian Process models in dynamic domains, establishing Gaussian Processes as another flexible modeling tool for Long-term Human-Robot Interaction (HRI) Studies. 
    more » « less
  2. Systems engineering processes coordinate the efforts of many individuals to design a complex system. However, the goals of the involved individuals do not necessarily align with the system-level goals. Everyone, including managers, systems engineers, subsystem engineers, component designers, and contractors, is self-interested. It is not currently understood how this discrepancy between organizational and personal goals affects the outcome of complex systems engineering processes. To answer this question, we need a systems engineering theory that accounts for human behavior. Such a theory can be ideally expressed as a dynamic hierarchical network game of incomplete information. The nodes of this network represent individual agents and the edges the transfer of information and incentives. All agents decide independently on how much effort they should devote to a delegated task by maximizing their expected utility; the expectation is over their beliefs about the actions of all other individuals and the moves of nature. An essential component of such a model is the quality function, defined as the map between an agent’s effort and the quality of their job outcome. In the economics literature, the quality function is assumed to be a linear function of effort with additive Gaussian noise. This simplistic assumption ignores two critical factors relevant to systems engineering: (1) the complexity of the design task, and (2) the problem-solving skills of the agent. Systems engineers establish their beliefs about these two factors through years of job experience. In this paper, we encode these beliefs in clear mathematical statements about the form of the quality function. Our approach proceeds in two steps: (1) we construct a generative stochastic model of the delegated task, and (2) we develop a reduced order representation suitable for use in a more extensive game-theoretic model of a systems engineering process. Focusing on the early design stages of a systems engineering process, we model the design task as a function maximization problem and, thus, we associate the systems engineer’s beliefs about the complexity of the task with their beliefs about the complexity of the function being maximized. Furthermore, we associate an agent’s problem solving-skills with the strategy they use to solve the underlying function maximization problem. We identify two agent types: “naïve” (follows a random search strategy) and “skillful” (follows a Bayesian global optimization strategy). Through an extensive simulation study, we show that the assumption of the linear quality function is only valid for small effort levels. In general, the quality function is an increasing, concave function with derivative and curvature that depend on the problem complexity and agent’s skills. 
    more » « less
  3. Neurobiological theories of spatial cognition developed with respect to recording data from relatively small and/or simplistic environments compared to animals’ natural habitats. It has been unclear how to extend theoretical models to large or complex spaces. Complementarily, in autonomous systems technology, applications have been growing for distributed control methods that scale to large numbers of low-footprint mobile platforms. Animals and many-robot groups must solve common problems of navigating complex and uncertain environments. Here, we introduce the NeuroSwarms control framework to investigate whether adaptive, autonomous swarm control of minimal artificial agents can be achieved by direct analogy to neural circuits of rodent spatial cognition. NeuroSwarms analogizes agents to neurons and swarming groups to recurrent networks. We implemented neuron-like agent interactions in which mutually visible agents operate as if they were reciprocally connected place cells in an attractor network. We attributed a phase state to agents to enable patterns of oscillatory synchronization similar to hippocampal models of theta-rhythmic (5–12 Hz) sequence generation. We demonstrate that multi-agent swarming and reward-approach dynamics can be expressed as a mobile form of Hebbian learning and that NeuroSwarms supports a single-entity paradigm that directly informs theoretical models of animal cognition. We present emergent behaviors including phase-organized rings and trajectory sequences that interact with environmental cues and geometry in large, fragmented mazes. Thus, NeuroSwarms is a model artificial spatial system that integrates autonomous control and theoretical neuroscience to potentially uncover common principles to advance both domains. 
    more » « less
  4. This paper presents the rationale and current progress of my Ph.D. dissertation: "design interactions between robot surfaces and human designers." This specific topic serves as a case study trying to explore the question of how to design an interactive and partially intelligent space. We proposed the concept of "space agent" defined as "interactive and intelligent environments perceived by users as human agents" based on communication theories. Built upon this concept, we proposed a design framework for interactive environments. Then we further explored literatures about what space agent could contribute to human users specifically for the case of interior designers' work space. Research questions and research designs are introduced in this paper, followed by the discussions of experiments design. 
    more » « less
  5. In recent years, the popularity of AI-enabled conversational agents or chatbots has risen as an alternative to traditional online surveys to elicit information from people. However, there is a gap in using single-agent chatbots to converse and gather multi-faceted information across a wide variety of topics. Prior works suggest that single-agent chatbots struggle to understand user intentions and interpret human language during a multi-faceted conversation. In this work, we investigated how multi-agent chatbot systems can be utilized to conduct a multi-faceted conversation across multiple domains. To that end, we conducted a Wizard of Oz study to investigate the design of a multi-agent chatbot for gathering public input across multiple high-level domains and their associated topics. Next, we designed, developed, and evaluated CommunityBots - a multi-agent chatbot platform where each chatbot handles a different domain individually. To manage conversation across multiple topics and chatbots, we proposed a novel Conversation and Topic Management (CTM) mechanism that handles topic-switching and chatbot-switching based on user responses and intentions. We conducted a between-subject study comparing CommunityBots to a single-agent chatbot baseline with 96 crowd workers. The results from our evaluation demonstrate that CommunityBots participants were significantly more engaged, provided higher quality responses, and experienced fewer conversation interruptions while conversing with multiple different chatbots in the same session. We also found that the visual cues integrated with the interface helped the participants better understand the functionalities of the CTM mechanism, which enabled them to perceive changes in textual conversation, leading to better user satisfaction. Based on the empirical insights from our study, we discuss future research avenues for multi-agent chatbot design and its application for rich information elicitation.

     
    more » « less