- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Appenzeller, Joerg (1)
-
Chen, Zhihong (1)
-
Daniel, John (1)
-
Dilley, Neil (1)
-
Sun, Zheng (1)
-
Tan, Yuanqiu (1)
-
Zhang, Xuejian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Probabilistic computing is a computing scheme that offers a more efficient approach than conventional complementary metal-oxide–semiconductor (CMOS)-based logic in a variety of applications ranging from optimization to Bayesian inference, and invertible Boolean logic. The probabilistic bit (or p-bit, the base unit of probabilistic computing) is a naturally fluctuating entity that requires tunable stochasticity; by coupling low-barrier stochastic magnetic tunnel junctions (MTJs) with a transistor circuit, a compact implementation is achieved. In this work, by combining stochastic MTJs with 2D-MoS2field-effect transistors (FETs), we demonstrate an on-chip realization of a p-bit building block displaying voltage-controllable stochasticity. Supported by circuit simulations, we analyze the three transistor-one magnetic tunnel junction (3T-1MTJ) p-bit design, evaluating how the characteristics of each component influence the overall p-bit output. While the current approach has not reached the level of maturity required to compete with CMOS-compatible MTJ technology, the design rules presented in this work are valuable for future experimental implementations of scaled on-chip p-bit networks with reduced footprint.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
