Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We investigate an infinite‐horizon time‐inconsistent mean‐field game (MFG) in a discrete time setting. We first present a classic equilibrium for the MFG and its associated existence result. This classic equilibrium aligns with the conventional equilibrium concept studied in MFG literature when the context is time‐consistent. Then we demonstrate that while this equilibrium produces an approximate optimal strategy when applied to the related ‐agent games, it does so solely in a precommitment sense. Therefore, it cannot function as a genuinely approximate equilibrium strategy from the perspective of a sophisticated agent within the ‐agent game. To address this limitation, we propose a newconsistentequilibrium concept in both the MFG and the ‐agent game. We show that a consistent equilibrium in the MFG can indeed function as an approximate consistent equilibrium in the ‐agent game. Additionally, we analyze the convergence of consistent equilibria for ‐agent games toward a consistent MFG equilibrium as tends to infinity.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract We study heterogeneously interacting diffusive particle systems with mean-field-type interaction characterized by an underlying graphon and their finite particle approximations. Under suitable conditions, we obtain exponential concentration estimates over a finite time horizon for both 1- and 2-Wasserstein distances between the empirical measures of the finite particle systems and the averaged law of the graphon system.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract We determine the order of thek-core in a large class of dense graph sequences. Let$$G_n$$be a sequence of undirected,n-vertex graphs with edge weights$$\{a^n_{i,j}\}_{i,j \in [n]}$$that converges to a graphon$$W\colon[0,1]^2 \to [0,+\infty)$$in the cut metric. Keeping an edge (i,j) of$$G_n$$with probability$${a^n_{i,j}}/{n}$$independently, we obtain a sequence of random graphs$$G_n({1}/{n})$$. Using a branching process and the theory of dense graph limits, under mild assumptions we obtain the order of thek-core of random graphs$$G_n({1}/{n})$$. Our result can also be used to obtain the threshold of appearance of ak-core of ordern.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract This paper studies an equity market of stochastic dimension, where the number of assets fluctuates over time. In such a market, we develop the fundamental theorem of asset pricing, which provides the equivalence of the following statements: (i) there exists a supermartingale numéraire portfolio; (ii) each dissected market, which is of a fixed dimension between dimensional jumps, has locally finite growth; (iii) there is no arbitrage of the first kind; (iv) there exists a local martingale deflator; (v) the market is viable. We also present the optional decomposition theorem, which characterizes a given nonnegative process as the wealth process of some investment‐consumption strategy. Furthermore, similar results still hold in an open market embedded in the entire market of stochastic dimension, where investors can only invest in a fixed number of large capitalization stocks. These results are developed in an equity market model where the price process is given by a piecewise continuous semimartingale of stochastic dimension. Without the continuity assumption on the price process, we present similar results but without explicit characterization of the numéraire portfolio.more » « less
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available May 1, 2026
An official website of the United States government
