Abstract An open market is a subset of a larger equity market, composed of a certain fixed number of top‐capitalization stocks. Though the number of stocks in the open market is fixed, their composition changes over time, as each company's rank by market capitalization fluctuates. When one is allowed to invest also in a money market, an open market resembles the entire “closed” equity market in the sense that the market viability (lack of arbitrage) is equivalent to the existence of a numéraire portfolio (which cannot be outperformed). When access to the money market is prohibited, the class of portfolios shrinks significantly in open markets; in such a setting, we discuss the Capital Asset Pricing Model, how to construct functionally generated portfolios, and the concept of universal portfolio.
more »
« less
Arbitrage theory in a market of stochastic dimension
Abstract This paper studies an equity market of stochastic dimension, where the number of assets fluctuates over time. In such a market, we develop the fundamental theorem of asset pricing, which provides the equivalence of the following statements: (i) there exists a supermartingale numéraire portfolio; (ii) each dissected market, which is of a fixed dimension between dimensional jumps, has locally finite growth; (iii) there is no arbitrage of the first kind; (iv) there exists a local martingale deflator; (v) the market is viable. We also present the optional decomposition theorem, which characterizes a given nonnegative process as the wealth process of some investment‐consumption strategy. Furthermore, similar results still hold in an open market embedded in the entire market of stochastic dimension, where investors can only invest in a fixed number of large capitalization stocks. These results are developed in an equity market model where the price process is given by a piecewise continuous semimartingale of stochastic dimension. Without the continuity assumption on the price process, we present similar results but without explicit characterization of the numéraire portfolio.
more »
« less
- Award ID(s):
- 2106556
- PAR ID:
- 10452094
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Mathematical Finance
- ISSN:
- 0960-1627
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quadratic expansions in optimal investment with respect to perturbations of the semimartingale modelWe study the response of the optimal investment problem to small changes of the stock price dynamics. Starting with a multidimensional semimartingale setting of an incomplete market, we suppose that the perturbation process is also a general semimartingale. We obtain second-order expansions of the value functions, first-order corrections to the optimisers, and provide the adjustments to the optimal control that match the objective function up to the second order. We also give a characterisation in terms of the risk-tolerance wealth process, if it exists, by reducing the problem to the Kunita–Watanabe decomposition under a change of measure and numéraire. Finally, we illustrate the results by examples of base models that allow closed-form solutions, but where this structure is lost under perturbations of the model where our results allow an approximate solution.more » « less
-
In this work we present an equilibrium formulation for price impacts. This is motivated by the Bühlmann equilibrium in which assets are sold into a system of market participants, for example, a fire sale in systemic risk, and can be viewed as a generalization of the Esscher premium. Existence and uniqueness of clearing prices for the liquidation of a portfolio are studied. We also investigate other desired portfolio properties including monotonicity and concavity. Price per portfolio unit sold is also calculated. In special cases, we study price impacts generated by market participants who follow the exponential utility and power utility.more » « less
-
We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Our proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters.more » « less
-
In this paper, we develop the theory of functional generation of portfolios in an equity market with changing dimension. By introducing dimensional jumps in the market, as well as jumps in stock capitalization between the dimensional jumps, we construct different types of self‐financing stock portfolios (additive, multiplicative, and rank‐based) in a very general setting. Our study explains how a dimensional change caused by a listing or delisting event of a stock, and unexpected shocks in the market, affect portfolio return. We also provide empirical analyses of some classical portfolios, quantifying the impact of dimensional change in portfolio performance relative to the market.more » « less
An official website of the United States government
