skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106733

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel solid-fluid coupling method to capture the subtle hydrophobic and hydrophilic interactions between liquid, solid, and air at their multi-phase junctions. The key component of our approach is a Lagrangian model that tackles the coupling, evolution, and equilibrium of dynamic contact lines evolving on the interface between surface-tension fluid and deformable objects. This contact-line model captures an ensemble of small-scale geometric and physical processes, including dynamic waterfront tracking, local momentum transfer and force balance, and interfacial tension calculation. On top of this contact-line model, we further developed a mesh-based level set method to evolve the three-phase T-junction on a deformable solid surface. Our dynamic contact-line model, in conjunction with its monolithic coupling system, unifies the simulation of various hydrophobic and hydrophilic solid-fluid-interaction phenomena and enables a broad range of challenging small-scale elastocapillary phenomena that were previously difficult or impractical to solve, such as the elastocapillary origami and self-assembly, dynamic contact angles of drops, capillary adhesion, as well as wetting and splashing on vibrating surfaces. 
    more » « less