skip to main content


Title: Hydrophobic and Hydrophilic Solid-Fluid Interaction
We propose a novel solid-fluid coupling method to capture the subtle hydrophobic and hydrophilic interactions between liquid, solid, and air at their multi-phase junctions. The key component of our approach is a Lagrangian model that tackles the coupling, evolution, and equilibrium of dynamic contact lines evolving on the interface between surface-tension fluid and deformable objects. This contact-line model captures an ensemble of small-scale geometric and physical processes, including dynamic waterfront tracking, local momentum transfer and force balance, and interfacial tension calculation. On top of this contact-line model, we further developed a mesh-based level set method to evolve the three-phase T-junction on a deformable solid surface. Our dynamic contact-line model, in conjunction with its monolithic coupling system, unifies the simulation of various hydrophobic and hydrophilic solid-fluid-interaction phenomena and enables a broad range of challenging small-scale elastocapillary phenomena that were previously difficult or impractical to solve, such as the elastocapillary origami and self-assembly, dynamic contact angles of drops, capillary adhesion, as well as wetting and splashing on vibrating surfaces.  more » « less
Award ID(s):
2144806 2106733
PAR ID:
10427086
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
41
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biofouling at the solid–liquid–air interface poses a serious threat to public health and environmental sustainability. Despite the variety of antifouling materials developed, few have proven to resist fouling at the three‐phase contact line. In fact, antifouling at the liquid–solid interface and the air–solid interface call for opposite surface properties—hydrophilic for the former and hydrophobic for the latter. By devising a new design strategy, one that maximizes the mismatch of surface energies of comonomers for dynamic chain reorientation at the three‐phase contact line, an antifouling amphiphilic copolymer is obtained. The novel amphiphilic copolymer reduces the formation of biofilms byPseudomonas aeruginosaand outperforms a zwitterionic polymer, the current leading antifouling chemistry. The copolymer is synthesized using initiated chemical vapor deposition (iCVD), which leads to molecular‐level heterogeneities composed of zwitterionic and fluorinated moieties by avoiding undesirable surface tension effects. Atomic force microscopy, x‐ray diffractometry, and Fourier transform infrared spectroscopy confirm the copolymer's amphiphilicity and lack of microphase separation. Scanning electron microscopy provides visual confirmation of the diminished biofilm growth. The versatile iCVD technique is amenable to a range of substrates and enables the application of this new material to food processing, healthcare, and underwater performance.

     
    more » « less
  2. Thermodynamics tells us to expect underwater contact between two hydrophobic surfaces to result in stronger adhesion compared to two hydrophilic surfaces. However, the presence of water changes not only energetics but also the dynamic process of reaching a final state, which couples solid deformation and liquid evacuation. These dynamics can create challenges for achieving strong underwater adhesion/friction, which affects diverse fields including soft robotics, biolocomotion, and tire traction. Closer investigation, requiring sufficiently precise resolution of film evacuation while simultaneously controlling surface wettability, has been lacking. We perform high-resolution in situ frustrated total internal reflection imaging to track underwater contact evolution between soft-elastic hemispheres of varying stiffness and smooth–hard surfaces of varying wettability. Surprisingly, we find the exponential rate of water evacuation from hydrophobic–hydrophobic (adhesive) contact is three orders of magnitude lower than that from hydrophobic–hydrophilic (nonadhesive) contact. The trend of decreasing rate with decreasing wettability of glass sharply changes about a point where thermodynamic adhesion crosses zero, suggesting a transition in mode of evacuation, which is illuminated by three-dimensional spatiotemporal height maps. Adhesive contact is characterized by the early localization of sealed puddles, whereas nonadhesive contact remains smooth, with film-wise evacuation from one central puddle. Measurements with a human thumb and alternatively hydrophobic/hydrophilic glass surface demonstrate practical consequences of the same dynamics: adhesive interactions cause instability in valleys and lead to a state of more trapped water and less intimate solid–solid contact. These findings offer interpretation of patterned texture seen in underwater biolocomotive adaptations as well as insight toward technological implementation.

     
    more » « less
  3. Abstract

    Frosting occurs due to the freezing of condensed water droplets on a supercooled surface. The nucleated frost propagates through interdroplet bridges and covers the entire surface, resulting from the deposition of highly supersaturated vapor surrounding tiny droplets. While inhibition of the formation of frost bridges is not possible, the propagation of frost can be delayed by effectively removing tiny droplets. Passive technologies, such as superhydrophobic surfaces (SHS) and hydrophobic slippery liquid‐infused porous surfaces (SLIPS), rely on static growth and direct contact with densely distributed droplets. However, use of these approaches in delaying frost propagation involves challenges, as the interdroplet distance remains small. Here, we report a new approach of spontaneous droplet movement on hydrophilic SLIPS to delay the formation of interdroplet frost bridges. Surface tension forces generated by the hydrophilic oil meniscus of a large water droplet efficiently pull neighboring droplets with a diameter of less than 20 μm from all directions. This causes a dynamic separation between water droplets and an adjacent frozen droplet. Such a process delays the formation and propagation of interdroplet frost bridges. Consequently, there is significant delay in frosting on hydrophilic SLIPS compared to those on SHS and hydrophobic SLIPS.

     
    more » « less
  4. Abstract

    In this article, we propose a novel hybrid framework by combining smoothed particle hydrodynamics and adaptive narrow band fluid implicit particle method (NB‐FLIP) to faithfully model the multiphysical processes involving heat transfer and phase transition, and to precisely simulate the dynamics of condensed droplets moving along intricate objects. We first formulate a governing physical model built upon an improved phase transition model and an augmented on‐surface drop analysis method to achieve realistic condensation effects over intricate hydrophilic/hydrophobic interface. To achieve both high‐fidelity interactions and high‐resolution visual effects, we further develop an adaptive NB‐FLIP solver with octree‐dictated background grid in order to further enhance the performance of our framework. Experimental results have shown that our approach can be used to efficiently and realistically simulate the small‐scale interaction details between condensed drops and complex objects with arbitrary geometry.

     
    more » « less
  5. Altering soil wettability by inclusion of hydrophobicity could be an effective way to restrict evaporation from soil, thereby conserving water resources. In this study, 4-μL sessile water droplets were evaporated from an artificial soil millipore comprised of three glass (i.e. hydrophilic) and Teflon (i.e. hydrophobic) 2.38-mm-diameter beads. The distance between the beads were kept constant (i.e. center-to-center spacing of 3.1 mm). Experiments were conducted in an environmental chamber at an air temperature of 20°C and 30% and 75% relative humidity (RH). Evaporation rates were faster (i.e. ∼19 minutes and ∼49 minutes at 30% and 75% RH) from hydrophilic pores than the Teflon one (i.e. ∼24 minutes and ∼52 minutes at 30% and 75% RH) due in part to greater air-water contact area. Rupture of liquid droplets during evaporation was analyzed and predictions were made on rupture based on contact line pinning and depinning, projected surface area just before rupture, and pressure difference across liquid-vapor interface. It was observed that, in hydrophilic pore, the liquid droplet was pinned on one bead and the contact line on the other beads continuously decreased by deforming the liquid-vapor interface, though all three gas-liquid-solid contact lines decreased at a marginal rate in hydrophobic pore. For hydrophilic and hydrophobic pores, approximately 1.7 mm2 and 1.8–2 mm2 projected area of the droplet was predicted at 30% and 75% RH just before rupture occurs. Associated pressure difference responsible for rupture was estimated based on the deformation of curvature of liquid-vapor interface. 
    more » « less