Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 13, 2026
-
Free, publicly-accessible full text available June 22, 2026
-
Within the rapidly evolving domain of Electronic Design Automation (EDA), Large Language Models (LLMs) have emerged as transformative technologies, offering unprecedented capabilities for optimizing and automating various aspects of electronic design. This survey provides a comprehensive exploration of LLM applications in EDA, focusing on advancements in model architectures, the implications of varying model sizes, and innovative customization techniques that enable tailored analytical insights. By examining the intersection of LLM capabilities and EDA requirements, the article highlights the significant impact these models have on extracting nuanced understandings from complex datasets. Furthermore, it addresses the challenges and opportunities in integrating LLMs into EDA workflows, paving the way for future research and application in this dynamic field. Through this detailed analysis, the survey aims to offer valuable insights to professionals in the EDA industry, AI researchers, and anyone interested in the convergence of advanced AI technologies and electronic design.more » « lessFree, publicly-accessible full text available May 31, 2026
-
Free, publicly-accessible full text available March 16, 2026
-
The rise of machine learning (ML) technology inspires a boom in its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafting ML models remains a complex and time-consuming process because it requires extensive human expertise and tremendous engineering efforts to carefully extract features and design model architectures. In this work, we leverage automated ML techniques to automate the ML model development for routability prediction, a well-established technique that can help to guide cell placement toward routable solutions. We present an automated feature selection method to identify suitable features for model inputs. We develop a neural architecture search method to search for high-quality neural architectures without human interference. Our search method supports various operations and highly flexible connections, leading to architectures significantly different from all previous human-crafted models. Our experimental results demonstrate that our automatically generated models clearly outperform multiple representative manually crafted solutions with a superior 9.9% improvement. Moreover, compared with human-crafted models, which easily take weeks or months to develop, our efficient automated machine-learning framework completes the whole model development process in only 1 day.more » « less
-
Analog integrated circuit (IC) placement is a heavily manual and time-consuming task that has a significant impact on chip quality. Several recent studies apply machine learning (ML) techniques to directly predict the impact of placement on circuit performance or even guide the placement process. However, the significant diversity in analog design topologies can lead to different impacts on performance metrics (e.g., common-mode rejection ratio (CMRR) or offset voltage). Thus, it is unlikely that the same ML model structure will achieve the best performance for all designs and metrics. In addition, customizing ML models for different designs require more tremendous engineering efforts and longer development cycles. In this work, we leverage Neural Architecture Search (NAS) to automatically develop customized neural architectures for different analog circuit designs and metrics. Our proposed NAS methodology supports an unconstrained DAG-based search space containing a wide range of ML operations and topological connections. Our search strategy can efficiently explore this flexible search space and provide every design with the best-customized model to boost the model performance. We make unprejudiced comparisons with the claimed performance of the previous representative work on exactly the same dataset. After fully automated development within only 0.5 days, generated models give 3.61% superior accuracy than the prior art.more » « less
-
Machine learning (ML)-based techniques for electronic design automation (EDA) have boosted the performance of modern integrated circuits (ICs). Such achievement makes ML model to be of importance for the EDA industry. In addition, ML models for EDA are widely considered having high development cost because of the time-consuming and complicated training data generation process. Thus, confidentiality protection for EDA models is a critical issue. However, an adversary could apply model extraction attacks to steal the model in the sense of achieving the comparable performance to the victim's model. As model extraction attacks have posed great threats to other application domains, e.g., computer vision and natural language process, in this paper, we study model extraction attacks for EDA models under two real-world scenarios. It is the first work that (1) introduces model extraction attacks on EDA models and (2) proposes two attack methods against the unlimited and limited query budget scenarios. Our results show that our approach can achieve competitive performance with the well-trained victim model without any performance degradation. Based on the results, we demonstrate that model extraction attacks truly threaten the EDA model privacy and hope to raise concerns about ML security issues in EDA.more » « less
An official website of the United States government
