Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents Pesto, a high-performance Byzantine Fault Tolerant (BFT) database that offers full SQL compatibility. Pesto intentionally forgoes the use of State Machine Replication (SMR); SMR-based designs offer poor performance due to the several round trips required to order transactions. Pesto, instead, allows for replicas to remain inconsistent, and only synchronizes on demand to ensure that the database remain serializable in the presence of concurrent transactions and malicious actors. On TPC-C, Pesto matches the throughput of Peloton and Postgres, two unreplicated SQL database systems, while increasing throughput by 2.3x compared to classic SMR-based BFT-architectures, and reducing latency by 2.7x to 3.9x. Pesto's leaderless design minimizes the impact of replica failures and ensures robust performance.more » « lessFree, publicly-accessible full text available October 12, 2026
-
This paper presents Pesto, a high-performance Byzantine Fault Tolerant (BFT) database that offers full SQL compatibility. Pesto intentionally forgoes the use of State Machine Replication (SMR); SMR-based designs offer poor performance due to the several round trips required to order transactions. Pesto, instead, allows for replicas to remain inconsistent, and only synchronizes on demand to ensure that the database remain serializable in the presence of concurrent transactions and malicious actors. On TPC-C, Pesto matches the throughput of Peloton and Postgres, two unreplicated SQL database systems, while increasing throughput by 2.3x compared to classic SMR-based BFT-architectures, and reducing latency by 2.7x to 3.9x. Pesto's leaderless design minimizes the impact of replica failures and ensures robust performance.more » « lessFree, publicly-accessible full text available October 12, 2026
-
Modern distributed systems involve a diverse set of participants—ranging from cloud providers to jurisdictions, organizations, and individuals—who need to share data without necessarily trusting one another. These systems must ensure data availability and integrity, even when parties have disjoint, selfish, or adversarial interests. Byzantine Fault Tolerant (BFT) protocols provide strong guarantees in such settings and, for example, underpin much of today’s blockchain infrastructure. However, existing BFT solutions often fall short, delivering poor performance and rigid, restrictive interfaces.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Nakamoto’s consensus protocol, known for operating in a permissionless model where nodes can join and leave without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a necessary concession to the severe demands of supporting a permissionless model? This thesis shows that it is not with the Sandglass and Gorilla Sandglass protocols. Sandglass emerges as the first permissionless consensus algorithm that transcends Nakamoto’s probabilistic limitations by guaranteeing deterministic agreement and termination with probability 1, under general omission failures. It operates under a hybrid synchronous communication model, where, despite the unknown number and dynamic participation of nodes, a majority are consistently correct and synchronously connected. Further building on the framework of Sandglass, Gorilla Sandglass is the first Byzantine fault-tolerant consensus protocol that preserves deterministic agreement and termination with probability 1 within the same synchronous model adopted by Nakamoto. Gorilla addresses the limitations of Sandglass, which only tolerates benign failures, by extending its robustness to include Byzantine failures. We prove the correctness of Gorilla by mapping executions that would violate agreement or termination in Gorilla to executions in Sandglass, where we know such violations are impossible. Establishing termination proves particularly interesting, as the mapping requires reasoning about infinite executions and their probabilitiesmore » « less
-
Oshman, Rothem (Ed.)Nakamoto’s consensus protocol works in a permissionless model and tolerates Byzantine failures, but only offers probabilistic agreement. Recently, the Sandglass protocol has shown such weaker guarantees are not a necessary consequence of a permissionless model; yet, Sandglass only tolerates benign failures, and operates in an unconventional partially synchronous model. We present Gorilla Sandglass, the first Byzantine tolerant consensus protocol to guarantee, in the same synchronous model adopted by Nakamoto, deterministic agreement and termination with probability 1 in a permissionless setting. We prove the correctness of Gorilla by mapping executions that would violate agreement or termination in Gorilla to executions in Sandglass, where we know such violations are impossible. Establishing termination proves particularly interesting, as the mapping requires reasoning about infinite executions and their probabilities.more » « less
-
Scheideler, Christian (Ed.)Nakamoto’s consensus protocol works in a permissionless model, where nodes can join and leave without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a necessary concession to the severe demands of supporting a permissionless model? This paper shows that, at least in a benign failure model, it is not. It presents Sandglass, the first permissionless con- sensus algorithm that guarantees deterministic agreement and termination with probability 1 under general omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous communication model, where, at all times, a majority of nodes (though their number is unknown) are correct and synchronously connected, and allows nodes to join and leave at any time.more » « less
An official website of the United States government

Full Text Available