Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 11, 2025
-
Hyperspectral imaging (HSI) technology captures spectral information across a broad wavelength range, providing richer pixel features compared to traditional color images with only three channels. Although pixel classification in HSI has been extensively studied, especially using graph convolution neural networks (GCNs), quantifying epistemic and aleatoric uncertainties associated with the HSI classification (HSIC) results remains an unexplored area. These two uncertainties are effective for out-of-distribution (OOD) and misclassification detection, respectively. In this paper, we adapt two advanced uncertainty quantification models, evidential GCNs (EGCN) and graph posterior networks (GPN), designed for node classifications in graphs, into the realm of HSIC. We first reveal theoretically that a popular uncertainty cross-entropy (UCE) loss function is insufficient to produce good epistemic uncertainty when learning EGCNs. To mitigate the limitations, we propose two regularization terms. One leverages the inherent property of HSI data where each feature vector is a linear combination of the spectra signatures of the confounding materials, while the other is the total variation (TV) regularization to enforce the spatial smoothness of the evidence with edge-preserving. We demonstrate the effectiveness of the proposed regularization terms on both EGCN and GPN on three real-world HSIC datasets for OOD and misclassification detection tasks.more » « lessFree, publicly-accessible full text available May 10, 2025
-
Network traffic data analysis is important for securing our computing environment and data. However, analyzing network traffic data requires tremendous effort because of the complexity of continuously changing network traffic patterns. To assist the user in better understanding and analyzing the network traffic data, an interactive web-based visualization system is designed using multiple coordinated views, supporting a rich set of user interactions. For advancing the capability of analyzing network traffic data, feature extraction is considered along with uncertainty quantification to help the user make precise analyses. The system allows the user to perform a continuous visual analysis by requesting incrementally new subsets of data with updated visual representation. Case studies have been performed to determine the effectiveness of the system. The results from the case studies support that the system is well designed to understand network traffic data by identifying abnormal network traffic patterns.more » « less