skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2107455

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by the desire to understand stochastic algorithms for nonconvex optimization that are robust to their hyperparameter choices, we analyze a mini-batched prox-linear iterative algorithm for the canonical problem of recovering an unknown rank-1 matrix from rank-1 Gaussian measurements corrupted by noise. We derive a deterministic recursion that predicts the error of this method and show, using a non-asymptotic framework, that this prediction is accurate for any batch-size and a large range of step-sizes. In particular, our analysis reveals that this method, though stochastic, converges linearly from a local initialization with a fixed step-size to a statistical error floor. Our analysis also exposes how the batch-size, step-size, and noise level affect the (linear) convergence rate and the eventual statistical estimation error, and we demonstrate how to use our deterministic predictions to perform hyperparameter tuning (e.g. step-size and batch-size selection) without ever running the method. On a technical level, our analysis is enabled in part by showing that the fluctuations of the empirical iterates around our deterministic predictions scale with the error of the previous iterate. 
    more » « less
  2. Abstract We consider the problem of estimating the factors of a rank-$$1$$ matrix with i.i.d. Gaussian, rank-$$1$$ measurements that are nonlinearly transformed and corrupted by noise. Considering two prototypical choices for the nonlinearity, we study the convergence properties of a natural alternating update rule for this non-convex optimization problem starting from a random initialization. We show sharp convergence guarantees for a sample-split version of the algorithm by deriving a deterministic one-step recursion that is accurate even in high-dimensional problems. Notably, while the infinite-sample population update is uninformative and suggests exact recovery in a single step, the algorithm—and our deterministic one-step prediction—converges geometrically fast from a random initialization. Our sharp, non-asymptotic analysis also exposes several other fine-grained properties of this problem, including how the nonlinearity and noise level affect convergence behaviour. On a technical level, our results are enabled by showing that the empirical error recursion can be predicted by our deterministic one-step updates within fluctuations of the order $$n^{-1/2}$$ when each iteration is run with $$n$$ observations. Our technique leverages leave-one-out tools originating in the literature on high-dimensional $$M$$-estimation and provides an avenue for sharply analyzing complex iterative algorithms from a random initialization in other high-dimensional optimization problems with random data. 
    more » « less
  3. Abstract Designing effective and inclusive governance and public communication strategies for artificial intelligence (AI) requires understanding how stakeholders reason about its use and governance. We examine underlying factors and mechanisms that drive attitudes toward the use and governance of AI across six policy-relevant applications using structural equation modeling and surveys of both US adults (N = 3,524) and technology workers enrolled in an online computer science master’s degree program (N = 425). We find that the cultural values of individualism, egalitarianism, general risk aversion, and techno-skepticism are important drivers of AI attitudes. Perceived benefit drives attitudes toward AI use but not its governance. Experts hold more nuanced views than the public and are more supportive of AI use but not its regulation. Drawing on these findings, we discuss challenges and opportunities for participatory AI governance, and we recommend that trustworthy AI governance be emphasized as strongly as trustworthy AI. 
    more » « less
  4. Free, publicly-accessible full text available October 1, 2026
  5. Free, publicly-accessible full text available September 1, 2026
  6. Free, publicly-accessible full text available July 10, 2026
  7. Free, publicly-accessible full text available May 30, 2026
  8. Free, publicly-accessible full text available February 27, 2026