skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2107538

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Through a very careful analysis Kolopanis and collaborators identified a negative power spectrum (PS) systematic. The 21 cm cosmology community has assumed that any observational systematics would add power, as negative PS are non-physical. In addition to the mystery of their origin, negative PS systematics raise the spectre of artificially lowering upper limits on the 21 cm PS. It appears that the source of the negative PS systematics is a subtle interaction between choices in how the PS estimate is calculated and baseline-dependent systematic power. In this paper, we present a statistical model of baseline dependent systematics to explore how negative PS systematics can appear and their statistical characteristics. This leads us to recommendations on when and how to consider negative PS systematics when reporting observational 21 cm cosmology upper limits. 
    more » « less
  2. Abstract We present deep upper limits from the 2014 Murchison Widefield Array Phase I observing season, with a particular emphasis on identifying the spectral fingerprints of extremely faint radio frequency interference (RFI) contamination in the 21 cm power spectra (PS). After meticulous RFI excision involving a combination of theSSINSRFI flagger and a series of PS-based jackknife tests, our lowest upper limit on the Epoch of Reionization (EoR) 21 cm PS signal is Δ2≤ 1.61 × 104mK2atk= 0.258h Mpc−1at a redshift of 7.1 using 14.7 hr of data. By leveraging our understanding of how even fainter RFI is likely to contaminate the EoR PS, we are able to identify ultrafaint RFI signals in the cylindrical PS. Surprisingly this signature is most obvious in PS formed with less than 1 hr of data, but is potentially subdominant to other systematics in multiple-hour integrations. Since the total RFI budget in a PS detection is quite strict, this nontrivial integration behavior suggests a need to more realistically model coherently integrated ultrafaint RFI in PS measurements so that its potential contribution to a future detection can be diagnosed. 
    more » « less
  3. We explore the properties of interferometric data from high-redshift 21 cm measurements using the Murchison Widefield Array (MWA). These data contain the redshifted 21 cm signal, contamination from continuum foreground sources, and radiometric noise. The 21 cm signal from the Epoch of Reionization (EoR) is expected to be highly Gaussian, which motivates the use of the power spectrum as an effective statistical tool for extracting astrophysical information. We find that foreground contamination introduces non-Gaussianity into the distribution of measurements and then use this information to separate Gaussian from the non-Gaussian signal. We present improved upper limits on the 21 cm EoR power spectrum from the MWA using a Gaussian component of the data, based on the existing analysis from C. D. Nunhokee et al. 2025. This is extracted as the best-fitting Gaussian to the measured data. Our best 2σ (thermal+sample variance) limit for 268 hr of data improves from (30.2 mK)2 to (23.0 mK)2 at z = 6.5 for the East–West polarization, and from (39.2 mK)2 to (21.7 mK)2 = 470 mK2 in North–South. The best limits at z = 6.8 (z = 7.0) improve to P < (25.9 mK)2 (P < (32.0 mK)2) and k = 0.18h Mpc‑1 (k = 0.21h Mpc‑1). Results are compared with realistic simulations, which indicate that leakage from foreground contamination is a source of the non-Gaussian behavior. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026
  4. This paper presents the spherically averaged 21 cm power spectrum derived from Epoch of Reionization (EoR) observations conducted with the Murchison Widefield Array (MWA). The analysis uses EoR0-field data, centered at (R.A. = 0h, decl. = ‑27∘), collected between 2013 and 2023. Building on the improved methodology described in C. M. Trott et al. (2024), we incorporate additional data quality control techniques introduced in C. D. Nunhokee (2020). We report the lowest-power-level limits on the EoR power spectrum at redshifts z = 6.5, z = 6.8, and z = 7.0. These power levels, measured in the east–west polarization, are (30.2)2 mK2 at k = 0.18 h Mpc‑1, (31.2)2 mK2 at k = 0.18 h Mpc‑1, and (39.1)2 mK2 at k = 0.21 h Mpc‑1, respectively. The total integration time amounts to 268 hr. These results represent the deepest upper limits achieved by the MWA to date and provide the first evidence of the heated intergalactic medium at redshifts z = 6.5 to 7.0. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026