ABSTRACT We explore how chromatic radio frequency interference (RFI) flags affect 21-cm power spectrum measurements. We particularly study flags that are coarser than the analysis resolution. We find that such RFI flags produce excess power in the EoR window in much the same way as residual RFI. We use Fast Holographic Deconvolution (fhd) simulations to explain this as a result of chromatic disruptions in the interferometric sampling function of the array. We also use these simulations in conjunction with Error Propagated Power Spectrum with InterLeaved Observed Noise to show that without modifying current flagging strategies or implementing extremely accurate and complete foreground subtraction, 21-cm EoR experiments will fail to make a significant detection. As a mitigation strategy, we find that circumventing the chromatic structure altogether by flagging the entire analysis band when RFI is detected is simple to implement and highly successful. This demands a detection strategy with a low false-positive rate in order to prevent excessive data loss.
more »
« less
Evidence of Ultrafaint Radio Frequency Interference in Deep 21 cm Epoch of Reionization Power Spectra with the Murchison Wide-field Array
Abstract We present deep upper limits from the 2014 Murchison Widefield Array Phase I observing season, with a particular emphasis on identifying the spectral fingerprints of extremely faint radio frequency interference (RFI) contamination in the 21 cm power spectra (PS). After meticulous RFI excision involving a combination of theSSINSRFI flagger and a series of PS-based jackknife tests, our lowest upper limit on the Epoch of Reionization (EoR) 21 cm PS signal is Δ2≤ 1.61 × 104mK2atk= 0.258h Mpc−1at a redshift of 7.1 using 14.7 hr of data. By leveraging our understanding of how even fainter RFI is likely to contaminate the EoR PS, we are able to identify ultrafaint RFI signals in the cylindrical PS. Surprisingly this signature is most obvious in PS formed with less than 1 hr of data, but is potentially subdominant to other systematics in multiple-hour integrations. Since the total RFI budget in a PS detection is quite strict, this nontrivial integration behavior suggests a need to more realistically model coherently integrated ultrafaint RFI in PS measurements so that its potential contribution to a future detection can be diagnosed.
more »
« less
- PAR ID:
- 10472427
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 957
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 78
- Size(s):
- Article No. 78
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore the properties of interferometric data from high-redshift 21 cm measurements using the Murchison Widefield Array (MWA). These data contain the redshifted 21 cm signal, contamination from continuum foreground sources, and radiometric noise. The 21 cm signal from the Epoch of Reionization (EoR) is expected to be highly Gaussian, which motivates the use of the power spectrum as an effective statistical tool for extracting astrophysical information. We find that foreground contamination introduces non-Gaussianity into the distribution of measurements and then use this information to separate Gaussian from the non-Gaussian signal. We present improved upper limits on the 21 cm EoR power spectrum from the MWA using a Gaussian component of the data, based on the existing analysis from C. D. Nunhokee et al. 2025. This is extracted as the best-fitting Gaussian to the measured data. Our best 2σ (thermal+sample variance) limit for 268 hr of data improves from (30.2 mK)2 to (23.0 mK)2 at z = 6.5 for the East–West polarization, and from (39.2 mK)2 to (21.7 mK)2 = 470 mK2 in North–South. The best limits at z = 6.8 (z = 7.0) improve to P < (25.9 mK)2 (P < (32.0 mK)2) and k = 0.18h Mpc‑1 (k = 0.21h Mpc‑1). Results are compared with realistic simulations, which indicate that leakage from foreground contamination is a source of the non-Gaussian behavior.more » « less
-
null (Ed.)ABSTRACT We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination in higher order wave modes, which is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $$\sim 10\, {\rm mK}^2$$ for modes $$0.1 \ \lt k \lt 2 \, h\, {\rm Mpc}^{-1}$$. If the total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $$k \lt 0.9\, h\, {\rm Mpc}^{-1}$$, given no other systematic contaminants and an error tolerance as high as 10 per cent. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR.more » « less
-
Abstract The cross-correlation between the 21 cm field and the galaxy distribution is a potential probe of the Epoch of Reionization (EoR). The 21 cm signal traces neutral gas in the intergalactic medium and, on large spatial scales, this should be anticorrelated with the high-redshift galaxy distribution, which partly sources and tracks the ionized gas. In the near future, interferometers such as the Hydrogen Epoch of Reionization Array (HERA) are projected to provide extremely sensitive measurements of the 21 cm power spectrum. At the same time, the Nancy Grace Roman Space Telescope (Roman) will produce the most extensive catalog to date of bright galaxies from the EoR. Using seminumeric simulations of reionization, we explore the prospects for measuring the cross-power spectrum between the 21 cm and galaxy fields during the EoR. We forecast a 12σdetection between HERA and Roman, assuming an overlapping survey area of 500 deg2, redshift uncertainties ofσz= 0.01 (as expected for the high-latitude spectroscopic survey of Lyα-emitting galaxies), and an effective Lyαemitter duty cycle offLAE= 0.1. Thus the HERA–Roman cross-power spectrum may be used to help verify 21 cm detections from HERA. We find that the shot-noise in the galaxy distribution is a limiting factor for detection, and so supplemental observations using Roman should prioritize deeper observations, rather than covering a wider field of view. We have made a public GitHub repository containing key parts of the calculation, which accompanies this paper:https://github.com/plaplant/21cm_gal_cross_correlation.more » « less
-
Abstract We present the Local GroupL-Band Survey, a Karl G. Jansky Very Large Array (VLA) survey producing the highest-quality 21 cm and 1–2 GHz radio continuum images to date, for the six VLA-accessible, star-forming, Local Group galaxies. Leveraging the VLA’s spectral multiplexing power, we simultaneously survey the 21 cm line at high 0.4 km s−1velocity resolution, the 1–2 GHz polarized continuum, and four OH lines. For the massive spiral M31, the dwarf spiral M33, and the dwarf irregular galaxies NGC 6822, IC 10, IC 1613, and the Wolf–Lundmark–Melotte Galaxy, we use all four VLA configurations and the Green Bank Telescope to reach angular resolutions of <5″ (10–20 pc) for the 21 cm line with <1020cm−2column density sensitivity, and even sharper views (<2″; 5–10 pc) of the continuum. Targeting these nearby galaxies (D ≲ 1 Mpc) reveals a sharp, resolved view of the atomic gas, including 21 cm absorption, and continuum emission from supernova remnants and Hiiregions. These data sets can be used to test theories of the abundance and formation of cold clouds, the driving and dissipation of interstellar turbulence, and the impact of feedback from massive stars and supernovae. Here, we describe the survey design and execution, scientific motivation, data processing, and quality assurance. We provide a first look at and publicly release the wide-field 21 cm Hidata products for M31, M33, and four dwarf irregular targets in the survey, which represent some of the highest-physical-resolution 21 cm observations of any external galaxies beyond the LMC and SMC.more » « less
An official website of the United States government
