skip to main content


Search for: All records

Award ID contains: 2107728

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The advancement of nanoenabled wafer‐based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single‐crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large‐area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect‐laden seeds using lithographic and vapor‐phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side‐faceting. The nanotriangles formed in this high‐yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close‐packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single‐crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.

     
    more » « less
  2. Free, publicly-accessible full text available July 10, 2025
  3. The work represents a first-of-its-kind demonstration in that flat-lying Ag nanotriangles have never before been grown directly on substrate surfaces in organized patterns.

     
    more » « less
  4. The nanofabrication of periodic arrays of structurally complex oxide nanoshells is demonstrated. The so-formed structures are demonstrated as substrate-confined nanoreactors able to synthesize nanomaterials within their confines.

     
    more » « less