With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag + ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.
more »
« less
Large‐Area Periodic Arrays of Atomically Flat Single‐Crystal Gold Nanotriangles Formed Directly on Substrate Surfaces
Abstract The advancement of nanoenabled wafer‐based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single‐crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large‐area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect‐laden seeds using lithographic and vapor‐phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side‐faceting. The nanotriangles formed in this high‐yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close‐packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single‐crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.
more »
« less
- Award ID(s):
- 2107728
- PAR ID:
- 10379287
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 52
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite the unique advantages of the memristive switching devices based on two-dimensional (2D) transition metal dichalcogenides, scalable growth technologies of such 2D materials and wafer-level fabrication remain challenging. In this work, we present the gold-assisted large-area physical vapor deposition (PVD) growth of Bi2Se3 features for the scalable fabrication of 2D-material-based crossbar arrays of memristor devices. This work indicates that gold layers, prepatterned by photolithography processes, can catalyze PVD growth of few-layer Bi2Se3 with 100-folds larger crystal grain size in comparison with that grown on bare Si/SiO2 substrates. We also present a fluid-guided growth strategy to improve growth selectivity of Bi2Se3 on Au layers. Through the experimental and computational analyses, we identify two key processing parameters, i.e., the distance between Bi2Se3 powder and the target substrate and the distance between the leading edges of the substrate and the substrate holder with a hollow interior, which plays a critical role in realizing large-scale growth. By optimizing these growth parameters, we have successfully demonstrated cm-scale highly-selective Bi2Se3 growth on crossbar-arrayed structures with an in-lab yield of 86%. The whole process is etch- and plasma-free, substantially minimizing the damage to the crystal structure and also preventing the formation of rough 2D-material surfaces. Furthermore, we also preliminarily demonstrated memristive devices, which exhibit reproducible resistance switching characteristics (over 50 cycles) and a retention time of up to 106 s. This work provides a useful guideline for the scalable fabrication of vertically arranged crossbar arrays of 2D-material-based memristive devices, which is critical to the implementation of such devices for practical neuromorphic applications.more » « less
-
We demonstrate unique reflective properties of light from bare and gold-coated InP nanowire (NW) photonic crystal arrays. The undoped wurtzite InP nanowire arrays are grown by selective area epitaxy and coated with a 12-nm thick Al2O3film to suppress atmospheric oxidation. A nominally 10-nm thick gold film is deposited around the NWs to investigate plasmonic effects. The reflectance spectra show pronounced Fabry-Perot oscillations, which are shifted for p- and s-polarized light due to a strong intrinsic birefringence in the NW arrays. Gold-coating of the NW array leads to a significant increase of the reflectance by a factor of two to three compared to the uncoated array, which is partially attributed to a plasmon resonance of the gold caps on top of the NWs and to a plasmonic antenna effect for p-polarized light. These interpretations are supported by finite-difference-time-domain simulations. Our experiments and simulations indicate that NW arrays can be used to design micrometer-sized polarizers, analyzers, and mirrors which are important optical elements in optoelectronic integrated circuits.more » « less
-
Abstract The capability to study the dynamic formation of plasmonic molecular junction is of fundamental importance, and it will provide new insights into molecular electronics/plasmonics, single‐entity electrochemistry, and nanooptoelectronics. Here, a facile method to form plasmonic molecular junctions is reported by utilizing single gold nanoparticle (NP) collision events at a highly curved gold nanoelectrode modified with a self‐assembled monolayer. By using time‐resolved electrochemical current measurement and surface‐enhanced Raman scattering spectroscopy, the current changes and the evolution of interfacial chemical bonding are successfully observed in the newly formed molecular tunnel junctions during and after the gold NP “hit‐n‐stay” and “hit‐n‐run” collision events. The results lead to an in‐depth understanding of the single NP motion and the associated molecular level changes during the formation of the plasmonic molecular junctions in a single NP collision event. This method also provides a new platform to study molecular changes at the single molecule level during electron transport in a dynamic molecular tunnel junction.more » « less
-
Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer graftingAbstract Synthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.more » « less
An official website of the United States government
