Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Theoretical models of galaxy formation and evolution are primarily investigated through cosmological simulations and semi-analytical models. The former method consumes core-hours explicitly modeling the dynamics of the galaxies, whereas the latter method only requires core-hours foregoing directly simulating internal structure for computational efficiency. In this work, we present a proof-of-concept machine learning regression model, using a graph neural network architecture, to predict the stellar mass of high-redshift galaxies solely from their dark matter merger trees, trained from a radiation hydrodynamics cosmological simulation of the first galaxies.more » « less
- 
            Abstract We present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Z⊙and low stellar masses of 104–108M⊙in the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.more » « less
- 
            Abstract We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z⊙) and low stellar masses (104.7–107.6M⊙). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot/σ0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot/σ0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7.more » « less
- 
            Abstract We introduce the Phoenix Simulations, a suite of highly resolved cosmological simulations featuring hydrodynamics, primordial gas chemistry, primordial and enriched star formation and feedback, UV radiative transfer, and saved outputs with Δt= 200 kyr. We observe 73,523 individual primordial stars within 3313 distinct regions forming 2110 second-generation enriched star clusters byz≥ 12 within a combined 177.25 Mpc3volume across three simulations. The regions that lead to enriched star formation can contain ≳150 primordial stars, with 80% of regions having experienced combinations of primordial Type II, hypernovae, and/or pair-instability supernovae. Primordial supernovae enriched 0.8% of the volume, with 2% of enriched gas enriched by later-generation stars. We determine the extent of a primordial stellar region by its metal-rich or ionized hydrogen surrounding cloud; the metal-rich and ionized regions have time-dependent average radiir≲ 3more » « lesskpc. 7 and 17% of regions haver> 7 kpc for metal-rich and ionized radii, respectively. We find that the metallicity distribution function of second-generation stars overlaps that of subsequent Population II star formation, spanning metal-deficient (∼7.94 × 10−8Z⊙) to supersolar (∼3.71Z⊙), and that 30.5% of second-generation stars haveZ> 10−2Z⊙. We find that the metallicity of second-generation stars depends on progenitor configuration, with metals from pair-instability supernovae contributing to the most metal-rich clusters; these clusters form promptly after the supernova event. Finally, we create an interpretable regression model to predict the radius of the metal-rich influence of Population III star systems within the first 7–18 Myr after the first Population III stars form in the region.
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
