skip to main content


Search for: All records

Award ID contains: 2108094

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we present classification results on early supernova light curves from SCONE, a photometric classifier that uses convolutional neural networks to categorize supernovae (SNe) by type using light-curve data. SCONE is able to identify SN types from light curves at any stage, from the night of initial alert to the end of their lifetimes. Simulated LSST SNe light curves were truncated at 0, 5, 15, 25, and 50 days after the trigger date and used to train Gaussian processes in wavelength and time space to produce wavelength–time heatmaps. SCONE uses these heatmaps to perform six-way classification between SN types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. SCONE is able to perform classification with or without redshift, but we show that incorporating redshift information improves performance at each epoch. SCONE achieved 75% overall accuracy at the date of trigger (60% without redshift), and 89% accuracy 50 days after trigger (82% without redshift). SCONE was also tested on bright subsets of SNe (r< 20 mag) and produced 91% accuracy at the date of trigger (83% without redshift) and 95% five days after trigger (94.7% without redshift). SCONE is the first application of convolutional neural networks to the early-time photometric transient classification problem. All of the data processing and model code developed for this paper can be found in the SCONE software package1

    github.com/helenqu/scone

    located at github.com/helenqu/scone (Qu 2021).

     
    more » « less
  2. ABSTRACT

    Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet’s criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015–0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample.

     
    more » « less
  3. Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is non-trivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5-Year (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift difference between the true and matched host of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Dw) due to including SNe with incorrect host galaxy matches. For SN Ia-only simulations, we find Dw = 0.0013 +/- 0.0026 with constraints from the cosmic microwave background (CMB). Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Dw ranges from 0.0009 to 0.0032 depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of around 0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Upcoming photometric surveys will discover tens of thousands of Type Ia supernovae (SNe Ia), vastly outpacing the capacity of our spectroscopic resources. In order to maximize the science return of these observations in the absence of spectroscopic information, we must accurately extract key parameters, such as SN redshifts, with photometric information alone. We present Photo-zSNthesis, a convolutional neural network-based method for predicting full redshift probability distributions from multi-band supernova lightcurves, tested on both simulated Sloan Digital Sky Survey (SDSS) and Vera C. Rubin Legacy Survey of Space and Time (LSST) data as well as observed SDSS SNe. We show major improvements over predictions from existing methods on both simulations and real observations as well as minimal redshift-dependent bias, which is a challenge due to selection effects, e.g. Malmquist bias. The PDFs produced by this method are well-constrained and will maximize the cosmological constraining power of photometric SNe Ia samples. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. ABSTRACT As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time. 
    more » « less