skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2108411

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Line intensity mapping (LIM) experiments probing the nearby Universe can expect a considerable amount of cosmic infrared background (CIB) continuum emission from near and far-infrared galaxies. For the purpose of using LIM to constrain the star formation rate (SFR), we argue that the CIB continuum – traditionally treated as contamination – can be combined with the LIM signal to enhance the SFR constraints achievable. We first present a power spectrum model that combines continuum and line emissions assuming a common SFR model. We subsequently analyse the effectiveness of the joint model in the context of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM), which utilizes the $$[{\rm C\, \small {II}}]$$ molecular line to study the SFR. We numerically compute the theoretical power spectra according to our model and the EXCLAIM survey specifics, and perform Fisher analysis to forecast the SFR constraints. We find that although the joint model has no considerable advantage over LIM alone assuming the current survey level of EXCLAIM, its effects become significant when we consider more optimistic values of survey resolution and angular span that are expected of future LIM experiments. We show that the CIB is not only an additional SFR sensitive signal, but also serves to break the SFR parameter degeneracy that naturally emerges from the $$[{\rm C\, \small {II}}]$$ Fisher matrix. For this reason, addition of the CIB will allow improvements in the survey parameters to be better reflected in the SFR constraints, and can be effectively utilized by future LIM experiments. 
    more » « less
  2. Abstract Submillimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multiline emission model that simultaneously covers the mean, scatter, and correlations of [C ii ], CO J = 1–0 to J = 5–4, and [C i ] lines in the redshift range 1 ≤ z ≤ 9. We assume that the galaxy ISM line emission luminosity versus halo mass relations can be described by double power laws with redshift-dependent lognormal scatter. The model parameters are then derived by fitting to the state-of-the-art semianalytic simulation results that have successfully reproduced multiple submillimeter line observations at 0 ≤ z ≲ 6. We cross-check the line emission statistics predicted by the semianalytic simulation and our empirical model, finding that at z ≥ 1 our model reproduces the simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for the power spectra. Grounded on physically motivated and self-consistent galaxy simulations, this computationally efficient model will be helpful in forecasting ISM emission-line statistics for upcoming LIM surveys. 
    more » « less
  3. Abstract The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational transitions between z ∼ 1 and 5. We study the implications of these data for the high-redshift interstellar medium using a suite of state-of-the-art semianalytic simulations that have successfully reproduced many other submillimeter line observations across the relevant redshift range. We find that the semianalytic predictions are mildly in tension with the mmIME result, with a predicted CO power ∼3.5 σ below what was observed. We explore some simple modifications to the models that could resolve this tension. Increasing the molecular gas abundance at the relevant redshifts to ∼10 8 M ⊙ Mpc −3 , a value well above that obtained from directly imaged sources, would resolve the discrepancy, as would assuming a CO–H 2 conversion factor α CO of ∼1.5 M ⊙ K −1 (km s −1 ) −1 pc 2 , a value somewhat lower than is commonly assumed. We go on to demonstrate that these conclusions are quite sensitive to the detailed assumptions of our simulations, highlighting the need for more careful modeling efforts as more intensity mapping data become available. 
    more » « less