skip to main content


Search for: All records

Award ID contains: 2108411

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Submillimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multiline emission model that simultaneously covers the mean, scatter, and correlations of [C ii ], CO J = 1–0 to J = 5–4, and [C i ] lines in the redshift range 1 ≤ z ≤ 9. We assume that the galaxy ISM line emission luminosity versus halo mass relations can be described by double power laws with redshift-dependent lognormal scatter. The model parameters are then derived by fitting to the state-of-the-art semianalytic simulation results that have successfully reproduced multiple submillimeter line observations at 0 ≤ z ≲ 6. We cross-check the line emission statistics predicted by the semianalytic simulation and our empirical model, finding that at z ≥ 1 our model reproduces the simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for the power spectra. Grounded on physically motivated and self-consistent galaxy simulations, this computationally efficient model will be helpful in forecasting ISM emission-line statistics for upcoming LIM surveys. 
    more » « less
  2. Abstract The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational transitions between z ∼ 1 and 5. We study the implications of these data for the high-redshift interstellar medium using a suite of state-of-the-art semianalytic simulations that have successfully reproduced many other submillimeter line observations across the relevant redshift range. We find that the semianalytic predictions are mildly in tension with the mmIME result, with a predicted CO power ∼3.5 σ below what was observed. We explore some simple modifications to the models that could resolve this tension. Increasing the molecular gas abundance at the relevant redshifts to ∼10 8 M ⊙ Mpc −3 , a value well above that obtained from directly imaged sources, would resolve the discrepancy, as would assuming a CO–H 2 conversion factor α CO of ∼1.5 M ⊙ K −1 (km s −1 ) −1 pc 2 , a value somewhat lower than is commonly assumed. We go on to demonstrate that these conclusions are quite sensitive to the detailed assumptions of our simulations, highlighting the need for more careful modeling efforts as more intensity mapping data become available. 
    more » « less