- Award ID(s):
- 2108411
- PAR ID:
- 10330064
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 929
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Submillimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multiline emission model that simultaneously covers the mean, scatter, and correlations of [C ii ], CO J = 1–0 to J = 5–4, and [C i ] lines in the redshift range 1 ≤ z ≤ 9. We assume that the galaxy ISM line emission luminosity versus halo mass relations can be described by double power laws with redshift-dependent lognormal scatter. The model parameters are then derived by fitting to the state-of-the-art semianalytic simulation results that have successfully reproduced multiple submillimeter line observations at 0 ≤ z ≲ 6. We cross-check the line emission statistics predicted by the semianalytic simulation and our empirical model, finding that at z ≥ 1 our model reproduces the simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for the power spectra. Grounded on physically motivated and self-consistent galaxy simulations, this computationally efficient model will be helpful in forecasting ISM emission-line statistics for upcoming LIM surveys.more » « less
-
A forecast for large-scale structure constraints on Horndeski gravity with CO line intensity mapping
ABSTRACT We consider the potential for line intensity mapping (LIM) of the rotational CO(1-0), CO(2-1), and CO(3-2) transitions to detect deviations from General Relativity from 0 < z < 3 within the framework of a very general class of modified gravity models, called Horndeski’s theories. Our forecast assumes a multitracer analysis separately obtaining information from the matter power spectrum and the first two multipoles of the redshift space distortion power spectrum. To achieve ±0.1 level constraints on the slope of the kinetic gravity braiding and Planck mass evolution parameters, a mm-wave LIM experiment would need to accumulate ≈108–109 spectrometre-hours, feasible with instruments that could be deployed in the 2030s. Such a measurement would constrain the parameters of Horndeski’s theory at a level at worst competitive to and at best an order of magnitude tighter than existing constraints from the CMB and LSS. Our modelling code is publicly available.
-
We present a new upper limit on the cosmic molecular gas density at z=2.4−3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jy km/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity L′CO of eBOSS quasars of ≤1.26×1011 K km pc2 s−1, or an average molecular gas density ρH2 in regions of the universe containing a quasar of ≤1.52×108 M⊙ cMpc−3. The L′CO upper limit falls among CO line luminosities obtained from individually-targeted quasars in the COMAP redshift range, and the ρH2 value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.more » « less
-
Abstract We present the current state of models for the z ∼ 3 carbon monoxide (CO) line intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy–halo connection and previous CO (1–0) observations. The Pathfinder early science data spanning wavenumbers k = 0.051–0.62 Mpc −1 represent the first direct 3D constraint on the clustering component of the CO (1–0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude A clust ≲ 70 μ K 2 greatly improves on the indirect upper limit of 420 μ K 2 reported from the CO Power Spectrum Survey (COPSS) measurement at k ∼ 1 Mpc −1 . The COMAP limit excludes a subset of models from previous literature and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity–bias product, Tb 2 ≲ 50 μ K 2 , and the cosmic molecular gas density, ρ H2 < 2.5 × 10 8 M ⊙ Mpc −3 (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the 5 yr Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise ratio of 9–17. Between then and now, we also expect to detect the CO–galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star formation and galaxy evolution history.more » « less
-
Abstract Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project and the CO(1–0) line-intensity field at z ∼ 3 serving as our primary case study, we expect a ∼10% attenuation of the spherically averaged power spectrum on average at relevant scales of k ≈ 0.2–0.3 Mpc −1 compared to ∼25% for the interferometric Millimetre-wave Intensity Mapping Experiment targeting shot noise from CO lines at z ∼ 1–5 at scales of k ≳ 1 Mpc −1 . We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening and find that while an approximation using a single effective velocity scale is sufficient for spherically averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.more » « less