skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2108448

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. Biomolecular adsorption has great significance in medical, environmental, and technological processes. Understanding adsorption equilibrium and binding kinetics is essential for advanced process implementation. This requires identifying intrinsic determinants that predict optimal adsorption properties at bio–hybrid interfaces. Solid-binding peptides (SBPs) have targetable intrinsic properties involving peptide–peptide and peptide–solid interactions, which result in high-affinity material-selective binding. Atomic force microscopy investigations confirmed this complex interplay of multi-step peptide assemblies in a cooperative modus. Yet, most studies report adsorption properties of SBPs using non-cooperative or single-step adsorption models. Using non-cooperative kinetic models for predicting cooperative self-assembly behavior creates an oversimplified view of peptide adsorption, restricting implementing SBPs beyond their current use. To address these limitations and provide insight into surface-level events during self-assembly, a novel method, the Frequency Response Cooperativity model, was developed. This model iteratively fits adsorption data through spectral analysis of several time-dependent kinetic parameters. The model, applied to a widely used gold-binding peptide data obtained using a quartz crystal microbalance with dissipation, verified multi-step assembly. Peak deconvolution of spectral plots revealed distinct differences in the size and distribution of the kinetic rates present during adsorption across the concentrations. This approach provides new fundamental insights into the intricate dynamics of self-assembly of biomolecules on surfaces. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. The zebrafish is a powerful model organism to study the mechanisms governing transition metal ions within whole brain tissue. Zinc is one of the most abundant metal ions in the brain, playing a critical pathophysiological role in neurodegenerative diseases. The homeostasis of free, ionic zinc (Zn2+) is a key intersection point in many of these diseases, including Alzheimer’s disease and Parkinson’s disease. A Zn2+ imbalance can eventuate several disturbances that may lead to the development of neurodegenerative changes. Therefore, compact, reliable approaches that allow the optical detection of Zn2+ across the whole brain would contribute to our current understanding of the mechanisms that underlie neurological disease pathology. We developed an engineered fluorescence protein-based nanoprobe that can spatially and temporally resolve Zn2+ in living zebrafish brain tissue. The self-assembled engineered fluorescence protein on gold nanoparticles was shown to be confined to defined locations within the brain tissue, enabling site specific studies, compared to fluorescent protein-based molecular tools, which diffuse throughout the brain tissue. Two-photon excitation microscopy confirmed the physical and photometrical stability of these nanoprobes in living zebrafish (Danio rerio) brain tissue, while the addition of Zn2+ quenched the nanoprobe fluorescence. Combining orthogonal sensing methods with our engineered nanoprobes will enable the study of imbalances in homeostatic Zn2+ regulation. The proposed bionanoprobe system offers a versatile platform to couple metal ion specific linkers and contribute to the understanding of neurological diseases. 
    more » « less