Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.5-79.5 kDa), and proteins in complex cell lysate mixtures with varying payloads. We discover ligandable proteins and sites harboring hyperreactive methionine within the human proteome. Furthermore, this has been utilized to profile oxidation-sensitive methionine residues, which might increase our understanding of the protective role of methionine in diseases associated with elevated levels of reactive oxygen species. The Copper(I)-Nitrene Platform allows labeling methionine residues in live cancer cells, observing minimal cytotoxic effects and achieving dose-dependent labeling. Confocal imaging further reveals the spatial distribution of modified proteins within the cell membrane, cytoplasm, and nucleus, underscoring the platform’s potential in profiling the cellular interactome.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Abstract Inspired by the enzyme lysyl oxidase, which selectively converts the side chain of lysine into allysine, an aldehyde‐containing post‐translational modification, we report herein the first chemical method for the synthesis of allysine by selective oxidation of dimethyl lysine. This approach is highly chemoselective for dimethyl lysine on proteins. We highlight the utility of this biomimetic approach for generating aldehydes in a variety of pharmaceutically active linear and cyclic peptides at a late stage for their diversification with various affinity and fluorescent tags. Notably, we utilized this approach for generating small‐molecule aldehydes from the corresponding tertiary amines. We further demonstrated the potential of this approach in generating cellular models for studying allysine‐associated diseases.
-
Abstract In the realm of high‐throughput screening (HTS), macrocyclic peptide libraries traditionally necessitate decoding tags, essential for both library synthesis and identifying hit peptide sequences post‐screening. Our innovation introduces a tag‐free technology platform for synthesizing cyclic peptide libraries in solution and facilitates screening against biological targets to identify peptide binders through unconventional intramolecular CyClick and DeClick chemistries (CCDC) discovered through our research. This combination allows for the synthesis of diverse cyclic peptide libraries, the incorporation of various amino acids, and facile linearization and decoding of cyclic peptide binder sequences. Our sensitivity‐enhancing derivatization method, utilized in tandem with nano LC‐MS/MS, enables the sequencing of peptides even at exceedingly low picomolar concentrations. Employing our technology platform, we have successfully unearthed novel cyclic peptide binders against a monoclonal antibody and the first cyclic peptide binder of HIV capsid protein responsible for viral infections as validated by microscale thermal shift assays (TSA), biolayer interferometry (BLI) and functional assays.
-
Introducing 4-amino-3-thiophenol BODIPY “turn on” probe tunable to NIR wavelengths for monitoring aldehydes in tissues and living organoids by forming dihydrobenzothiazole products with aldehydes, exhibiting a remarkable fluorescence increase.
Free, publicly-accessible full text available March 27, 2025