Abstract Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody‐based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein‐protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody‐like potencies and specificities. Compared to linear and disulfide‐monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein‐protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof‐of‐concept work done on validating these libraries against different protein targets.
more »
« less
A Tag‐Free Platform for Synthesis and Screening of Cyclic Peptide Libraries
Abstract In the realm of high‐throughput screening (HTS), macrocyclic peptide libraries traditionally necessitate decoding tags, essential for both library synthesis and identifying hit peptide sequences post‐screening. Our innovation introduces a tag‐free technology platform for synthesizing cyclic peptide libraries in solution and facilitates screening against biological targets to identify peptide binders through unconventional intramolecular CyClick and DeClick chemistries (CCDC) discovered through our research. This combination allows for the synthesis of diverse cyclic peptide libraries, the incorporation of various amino acids, and facile linearization and decoding of cyclic peptide binder sequences. Our sensitivity‐enhancing derivatization method, utilized in tandem with nano LC‐MS/MS, enables the sequencing of peptides even at exceedingly low picomolar concentrations. Employing our technology platform, we have successfully unearthed novel cyclic peptide binders against a monoclonal antibody and the first cyclic peptide binder of HIV capsid protein responsible for viral infections as validated by microscale thermal shift assays (TSA), biolayer interferometry (BLI) and functional assays.
more »
« less
- Award ID(s):
- 2108774
- PAR ID:
- 10501098
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 21
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phage display, an ingenious invention for evaluating peptide libraries, has been limited to natural peptides that are ribosomally assembled with proteinogenic amino acids. Recently, there has been growing interest in chemically modifying phage libraries to create nonnatural cyclic and multicyclic peptides, which are appealing for use as inhibitors of protein–protein interactions. While earlier reports largely focused on side-chain side-chain cyclization, we report herein a novel strategy for creating backbone-side chain cyclized peptide libraries on phage. Our strategy capitalizes on the unique reactivity of an N-terminal cysteine (NCys) with 2-cyanobenzothiazole (CBT) which, in conjugation with another thiol-reactive group, can elicit rapid cyclization between an NCys and an internal cysteine. The resulting library was screened against two model proteins, namely Keap1 and Sortase A. The screening readily revealed potent inhibitors for both proteins with certain Keap1 ligands reaching low nanomolar potency. The backbone-side chain cyclization strategy described herein presents a significant addition to the toolkit of creating nonnatural macrocyclic peptide libraries for phage display.more » « less
-
Abstract We report the development of a small molecule‐based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide‐based tags (halocodes), we achieve high‐sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties. To demonstrate the utility of our platform for pooled screening, we synthesized a halocoded library of polylactide‐co‐glycolide (PLGA) nanoparticles and quantified uptake in ovarian cancer cells in a pooled manner. Our findings correlate with conventional fluorescence‐based assays. Additionally, we demonstrate the potential of halocodes for spatial mapping of nanoparticles using mass spectrometry imaging (MSI). Halocoding presents an accessible and modular nanoparticle screening platform capable of quantifying delivery of pooled nanocarrier libraries in a range of biological settings.more » « less
-
Abstract The ability to rapidly and accurately evaluate bioactive compounds immobilized on porous particles is crucial in the discovery of drugs, diagnostic reagents, ligands, and catalysts. Existing options for solid phase screening of bioactive compounds, while highly effective and well established, can be cost-prohibitive for proof-of-concept and early stage work, limiting its applicability and flexibility in new research areas. Here, we present a low-cost microfluidics-based platform enabling automated screening of small porous beads from solid-phase peptide libraries with high sensitivity and specificity, to identify leads with high binding affinity for a biological target. The integration of unbiased computer assisted image processing and analysis tools, provided the platform with the flexibility of sorting through beads with distinct fluorescence patterns. The customized design of the microfluidic device helped with handling beads with different diameters (~100–300 µm). As a microfluidic device, this portable novel platform can be integrated with a variety of analytical instruments to perform screening. In this study, the system utilizes fluorescence microscopy and unsupervised image analysis, and can operate at a sorting speed of up to 125 beads/hr (~3.5 times faster than a trained operator) providing >90% yield and >90% bead sorting accuracy. Notably, the device has proven successful in screening a model solid-phase peptide library by showing the ability to select beads carrying peptides binding a target protein (human IgG).more » « less
-
Abstract Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding pose and binding affinity predicted by computational docking. Here we develop a highly accurate structure-based virtual screen method, RosettaVS, for predicting docking poses and binding affinities. Our approach outperforms other state-of-the-art methods on a wide range of benchmarks, partially due to our ability to model receptor flexibility. We incorporate this into a new open-source artificial intelligence accelerated virtual screening platform for drug discovery. Using this platform, we screen multi-billion compound libraries against two unrelated targets, a ubiquitin ligase target KLHDC2 and the human voltage-gated sodium channel NaV1.7. For both targets, we discover hit compounds, including seven hits (14% hit rate) to KLHDC2 and four hits (44% hit rate) to NaV1.7, all with single digit micromolar binding affinities. Screening in both cases is completed in less than seven days. Finally, a high resolution X-ray crystallographic structure validates the predicted docking pose for the KLHDC2 ligand complex, demonstrating the effectiveness of our method in lead discovery.more » « less
An official website of the United States government
