skip to main content


Search for: All records

Award ID contains: 2109647

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 22, 2025
  2. Beecham, Roger ; Long, Jed A. ; Smith, Dianna ; Zhao, Qunshan ; Wise, Sarah (Ed.)
    Agent-based models (ABMs) are powerful tools used for better understanding, predicting, and responding to diseases. ABMs are well-suited to represent human health behaviors, a key driver of disease spread. However, many existing ABMs of infectious respiratory disease spread oversimplify or ignore behavioral aspects due to limited data and the variety of behavioral theories available. Therefore, this study aims to develop and implement a data-driven framework for agent decision-making related to health behaviors in geospatial ABMs of infectious disease spread. The agent decision-making framework uses a logistic regression model expressed in the form of odds ratios to calculate the probability of adopting a behavior. The framework is integrated into a geospatial ABM that simulates the spread of COVID-19 and mask usage among the student population at George Mason University in Fall 2021. The framework leverages odds ratios, which can be derived from surveys or open data, and can be modified to incorporate variables identified by behavioral theories. This advancement will offer the public and decision-makers greater insight into disease transmission, accurate predictions on disease outcomes, and preparation for future infectious disease outbreaks. 
    more » « less
  3. Abstract Having accurate building information is paramount for a plethora of applications, including humanitarian efforts, city planning, scientific studies, and navigation systems. While volunteered geographic information from sources such as OpenStreetMap (OSM) has good building geometry coverage, descriptive attributes such as the type of a building are sparse. To fill this gap, this study proposes a supervised learning-based approach to provide meaningful, semantic information for OSM data without manual intervention. We present a basic demonstration of our approach that classifies buildings into either residential or non-residential types for three study areas: Fairfax County in Virginia (VA), Mecklenburg County in North Carolina (NC), and the City of Boulder in Colorado (CO). The model leverages (i) available OSM tags capturing non-spatial attributes, (ii) geometric and topological properties of the building footprints including adjacent types of roads, proximity to parking lots, and building size. The model is trained and tested using ground truth data available for the three study areas. The results show that our approach achieves high accuracy in predicting building types for the selected areas. Additionally, a trained model is transferable with high accuracy to other regions where ground truth data is unavailable. The OSM and data science community are invited to build upon our approach to further enrich the volunteered geographic information in an automated manner. 
    more » « less