The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- andContext-Attention based Spatial-TemporalGraphConvolutionalNetworks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.
more »
« less
This content will become publicly available on October 29, 2025
Human Mobility Challenge: Are Transformers Effective for Human Mobility Prediction?
Transformer-based models are popular for time series forecasting and spatiotemporal prediction due to their ability to infer semantic correlations in long sequences. However, for human mobility prediction, temporal correlations, such as location patterns at the same time on previous days or weeks, are essential. While positional encodings help retain order, the self-attention mechanism causes a loss of temporal detail. To validate this claim, we used a simple approach in the 2nd ACM SIGSPATIAL Human Mobility Prediction Challenge, predicting locations based on past patterns weighted by reliability scores for missing data. Our simple approach was among the top 10 competitors and significantly outperformed the Transformer-based model that won the 2023 challenge.
more »
« less
- Award ID(s):
- 2109647
- PAR ID:
- 10582625
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400711503
- Page Range / eLocation ID:
- 60 to 63
- Subject(s) / Keyword(s):
- Human Mobility, Patterns of Life, Historical Heuristic
- Format(s):
- Medium: X
- Location:
- Atlanta GA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching, detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3% improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular data for them to train a machine learning model for their use cases, e.g., next location prediction.more » « less
-
Human mobility models typically produce mobility data to capture human mobility patterns individually or collectively based on real-world observations or assumptions, which are essential for many use cases in research and practice, e.g., mobile networking, autonomous driving, urban planning, and epidemic control. However, most existing mobility models suffer from practical issues like unknown accuracy and uncertain parameters in new use cases because they are normally designed and verified based on a particular use case (e.g., mobile phones, taxis, or mobile payments). This causes significant challenges for researchers when they try to select a representative human mobility model with appropriate parameters for new use cases. In this paper, we introduce a MObility VERification framework called MOVER to systematically measure the performance of a set of representative mobility models including both theoretical and empirical models based on a diverse set of use cases with various measures. Based on a taxonomy built upon spatial granularity and temporal continuity, we selected four representative mobility use cases (e.g., the vehicle tracking system, the camera-based system, the mobile payment system, and the cellular network system) to verify the generalizability of the state-of-the-art human mobility models. MOVER methodically characterizes the accuracy of five different mobility models in these four use cases based on a comprehensive set of mobility measures and provide two key lessons learned: (i) For the collective level measures, the finer spatial granularity of the user cases, the better generalization of the theoretical models; (ii) For the individual-level measures, the lower periodic temporal continuity of the user cases, the theoretical models typically generalize better than the empirical models. The verification results can help the research community to select appropriate mobility models and parameters in different use cases.more » « less
-
Gao, Song (Ed.)The current COVID-19 pandemic raises concerns worldwide, leading to serious health, economic, and social challenges. The rapid spread of the virus at a global scale highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has proven to be associated with viral transmission. In this study, we analyzed over 580 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographic regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amenable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected people’s travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures, proving that Twitter-based mobility implies the effectiveness of those measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts vary substantially among states.more » « less
-
In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches.more » « less