Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A new neutron SIMulation program based on the versatile GEANT4 toolkit, neuSIM4, has been developed to describe interactions of neutrons in the NE213 liquid scintillator from 0.1 to 3000 MeV. neuSIM4 is designed to accommodate complicated modern detector geometry setups with multiple scintillator detectors, each of which can be outfitted with more than one photo-multiplier. To address a broad spectrum of neutron energies, two new neutron interaction physics models, KSCIN and NxQMD, have been implemented in GEANT4. For neutrons with energy below 110 MeV, we incorporate a total of eleven neutron induced reaction channels on hydrogen and carbon nuclei, including nine carbon inelastic reaction channels, into KSCIN. Beyond 110 MeV, we implement a neutron induced reaction model, NxQMD, in GEANT4. We use its results as reference to evaluate other neutron-interaction physics models in GEANT4. We find that results from an existing cascade physics model (INCL) in GEANT4 agree very well with the results from NxQMD, and results from both codes agree with new and existing light response data. To connect KSCIN to NxQMD or INCL, we introduce a transition region where the contribution of neuSIM4 linearly decreases with corresponding increased contributions from NxQMD or INCL. To demonstrate the application of the new code, we simulate the light response and performance of a 2 × 2 m2 neutron detector wall array consisting of 25 2m-long scintillation bars. We are able to compare the predicted light response functions to the shape of the experimental response functions and calculate the efficiency of the neutron detector array for neutron energies up to 200 MeV. These simulation results will be pivotal for understanding the performance of modern neutron arrays with intricate geometries, especially in the measurements of neutron energy spectra in heavy-ion reactions.more » « lessFree, publicly-accessible full text available August 1, 2025
-
The boundaries of the Chart of Nuclides contain exotic isotopes that possess extreme proton-toneutron asymmetries. Here we report on two of the most exotic proton-rich isotopes where at least one half of their constitute nucleons are unbound. While the ground state of 8C is a resonance, its first excited state lies in the diffuse borderland between nuclear states and fleeting scattering features. Evidence for 9N, with seven protons and two neutrons, is also presented. This extremely proton-rich system represents the first-known example of a ground-state five-proton emitter. The energies of these states are consistent with theoretical predictions of an open-quantum-system approach.more » « less
-
Abstract We study the evolution of rapid neutron-capture process (r-process) isotopes in the galaxy. We analyze relative contributions from core-collapse supernovae (CCSNe), neutron star mergers, and collapsars under a range of astrophysical conditions and nuclear input data. Here we show that, although the r-process in each of these sites can lead to a similar (universal) elemental distribution, the detailed isotopic abundances can differ from one site to another. These differences may allow for the identification of which sources contributed to the early evolution of r-process material in the galaxy. Our simulations suggest that the early evolution was dominated by CCSNe and collapsar r-process nucleosynthesis. This conclusion may be testable if the next generation of observatories can deduce isotopic r-process abundances.more » « less
-
Context. Pulsational pair-instability supernovae (PPISNe) and pair instability supernovae (PISNe) are the result of a thermonuclear runaway in the presence of a background electron-positron pair plasma. As such, their evolution and resultant black hole masses could possibly be affected by screening corrections due to the electron pair plasma. Aims. The sensitivity of PISNe and PPISNe to relativistic weak screening has been explored. Methods. In this paper a weak screening model that includes effects from relativistic pair production has been developed and applied at temperatures approaching and exceeding the threshold for pair production. This screening model replaces “classical” screening commonly used in astrophysics. Modifications to the weak screening electron Debye length were incorporated in a computationally tractable analytic form. Results. In PPISNe the BH masses were found to increase somewhat at high temperatures, though this increase is small. The BH collapse is also found to occur at earlier times, and the pulsational morphology also changes. In addition to the resultant BH mass, the sensitivity to the screening model of the pulsational period, the pulse structure, the PPISN-to-PISN transition, and the shift in the BH mass gap has been analyzed. The dependence of the composition of the ejected mass was also examined.more » « less