Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Platzer, André; Rozier, Kristin Yvonne; Pradella, Matteo; Rossi, Matteo (Ed.)Abstract Stable infiniteness, strong finite witnessability, and smoothness are model-theoretic properties relevant to theory combination in satisfiability modulo theories. Theories that are strongly finitely witnessable and smooth are calledstrongly politeand can be effectively combined with other theories. Toledo, Zohar, and Barrett conjectured that stably infinite and strongly finitely witnessable theories are smooth and therefore strongly polite. They called counterexamples to this conjectureunicorn theories, as their existence seemed unlikely. We prove that, indeed, unicorns do not exist. We also prove versions of the Löwenheim–Skolem theorem and the Łoś–Vaught test for many-sorted logic.more » « less
-
Platzer, Andre; Rozier, Kristin Yvonne; Pradella, Matteo; Rossi, Matteo (Ed.)Abstract Great minds have long dreamed of creating machines that can function as general-purpose problem solvers. Satisfiability modulo theories (SMT) has emerged as one pragmatic realization of this dream, providing significant expressive power and automation. This tutorial is a beginner’s guide to SMT. It includes an overview of SMT and its formal foundations, a catalog of the main theories used in SMT solvers, and illustrations of how to obtain models and proofs. Throughout the tutorial, examples and exercises are provided as hands-on activities for the reader. They can be run using either Python or the SMT-LIB language, using either thecvc5or the Z3 SMT solver.more » « less
-
Gurfinkel, Arie; Ganesh, Vijay (Ed.)Abstract Satisfiability modulo finite fields enables automated verification for cryptosystems. Unfortunately, previous solvers scale poorly for even some simple systems of field equations, in part because they build a full Gröbner basis (GB) for the system. We propose a new solver that uses multiple, simpler GBs instead of one full GB. Our solver, implemented within the cvc5 SMT solver, admits specialized propagation algorithms, e.g., for understanding bitsums. Experiments show that it solves important bitsum-heavy determinism benchmarks far faster than prior solvers, without introducing much overhead for other benchmarks.more » « less
-
Gurfinkel, Arie; Ganesh, Vijay (Ed.)Abstract The dominant state-of-the-art approach for solving bit-vector formulas in Satisfiability Modulo Theories (SMT) is bit-blasting, an eager reduction to propositional logic. Bit-blasting is surprisingly efficient in practice but does not generally scale well with increasing bit-widths, especially when bit-vector arithmetic is present. In this paper, we present a novel CEGAR-style abstraction-refinement procedure for the theory of fixed-size bit-vectors that significantly improves the scalability of bit-blasting. We provide lemma schemes for various arithmetic bit-vector operators and an abduction-based framework for synthesizing refinement lemmas. We extended the state-of-the-art SMT solver Bitwuzla with our abstraction-refinement approach and show that it significantly improves solver performance on a variety of benchmark sets, including industrial benchmarks that arise from smart contract verification.more » « less
-
Enea, Constantin; Lal, Akash (Ed.)Abstract We study satisfiability modulo the theory of finite fields and give a decision procedure for this theory. We implement our procedure for prime fields inside the cvc5 SMT solver. Using this theory, we construct SMT queries that encode translation validation for various zero knowledge proof compilers applied to Boolean computations. We evaluate our procedure on these benchmarks. Our experiments show that our implementation is superior to previous approaches (which encode field arithmetic using integers or bit-vectors).more » « less
-
Enea, Constantin; Lal, Akash (Ed.)Abstract Zero Knowledge Proofs (ZKPs) are cryptographic protocols by which a prover convinces a verifier of the truth of a statement without revealing any other information. Typically, statements are expressed in a high-level language and then compiled to a low-level representation on which the ZKP operates. Thus,a bug in a ZKP compiler can compromise the statement that the ZK proof is supposed to establish.This paper takes a step towards ZKP compiler correctness by partially verifying afield-blastingcompiler pass, a pass that translates Boolean and bit-vector logic into equivalent operations in a finite field. First, we define correctness for field-blasters and ZKP compilers more generally. Next, we describe the specific field-blaster using a set of encoding rules and define verification conditions for individual rules. Finally, we connect the rules and the correctness definition by showing that if our verification conditions hold, the field-blaster is correct. We have implemented our approach in the CirC ZKP compiler and have proved bounded versions of the corresponding verification conditions. We show that our partially verified field-blaster does not hurt the performance of the compiler or its output; we also report on four bugs uncovered during verification.more » « less
-
Polite theory combination is a method for obtaining a solver for a combination of two (or more) theories using the solvers of each individual theory as black boxes. Unlike the earlier Nelson–Oppen method, which is usable only when both theories are stably infinite, only one of the theories needs to be strongly polite in order to use the polite combination method. In its original presentation, politeness was required from one of the theories rather than strong politeness, which was later proven to be insufficient. The first contribution of this paper is a proof that indeed these two notions are different, obtained by presenting a polite theory that is not strongly polite. We also study several variants of this question. The cost of the generality afforded by the polite combination method, compared to the Nelson–Oppen method, is a larger space of arrangements to consider, involving variables that are not necessarily shared between the purified parts of the input formula. The second contribution of this paper is a hybrid method (building on both polite and Nelson–Oppen combination), which aims to reduce the number of considered variables when a theory is stably infinite with respect to some of its sorts but not all of them. The time required to reason about arrangements is exponential in the worst case, so reducing the number of variables considered has the potential to improve performance significantly. We show preliminary evidence for this by demonstrating significant speed-up on a smart contract verification benchmark.more » « less
-
Sattler, Uli; Suda, Martin (Ed.)This work is a part of an ongoing effort to understand the relationships between properties used in theory combination. We here focus on including two properties that are related to shiny theories: the finite model property and stable finiteness. For any combination of properties, we consider the question of whether there exists a theory that exhibits it. When there is, we provide an example with the simplest possible signature. One particular class of interest includes theories with the finite model property that are not finitely witnessable. To construct such theories, we utilize the Busy Beaver function.more » « less
-
Sattler, U.; Suda, M. (Ed.)We prove the correctness of invertibility conditions for the theory of fixed-width bit-vectors—used to solve quantified bit-vector formulas in the Satisfiability Modulo Theories (SMT) solver cvc5— in the Coq proof assistant. Previous work proved many of these in a completely automatic fashion for arbitrary bit-width; however, some were only proved for bit-widths up to 65, even though they are being used to solve formulas over larger bit-widths. In this paper we describe the process of proving a representative subset of these invertibility conditions in Coq. In particular, we describe the BVList library for bit-vectors in Coq, our extensions to it, and proofs of the invertibility conditions.more » « less
An official website of the United States government
